<table>
<thead>
<tr>
<th>Front Row</th>
<th>Middle Row</th>
<th>Back Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Steven Subtelny</td>
<td>1. George Davis</td>
<td>1. Edgar Zwilling</td>
</tr>
<tr>
<td>5. Lillian Younca</td>
<td>5. Ina McGregor</td>
<td>5. Henry Tenner</td>
</tr>
<tr>
<td>11.</td>
<td>11.</td>
<td>11. Jay Angeline</td>
</tr>
<tr>
<td>12.</td>
<td>12.</td>
<td>12. Don Watt</td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>13. Bill Dossel</td>
</tr>
</tbody>
</table>
Production of Exogastrulae in Antosia and Echinorehinius

Curt H. Reef in 1932 discovered that treatment of developing sea-urchin eggs with sea water containing lithium salts results in the formation of exogastrulae and other related types of abnormal embryos. This has been the subject of numerous investigations since that time (see Child, 1940, 1941; Lindahl, 1940 and your experimental embryology texts for complete references). The exogastrulating action of the lithium is interpreted as a result of a general vitellinization of the egg in which the vegetal, endodermal and mesenchymal material increases at the expense of the animal, ectodermal, material. Other facts may bring about this effect but none are, as yet, known to give consistent results as lithium.

Equipment: Scissors, blunt forceps, 6" square of cheesecloth, 3 finger bowls, 12 symcon dishes, 4 standard dishes with lids, 3 slides and coverslips, 1 graduated (100 ml), 3 ordinary pipettes, 1 narrow long-tipped pipette, 1 fine pipette.

Solutions: 1 liter filtered sea water
50 ml Li-sea-water (20 ml of n/10 LiCl + 30 ml sea water)

Treatments: Obtain eggs and sperm of Antosia or of Echinorehinius in the usual way. Transfer a fairly large sample of the eggs in a finger bowl. At the time of first cleavage, transfer a sample of concentrated eggs (with not more than 1 ml of sea water) to a finger bowl containing about 50 ml of the Li-sea-water and at the same time, a similar sample to a control dish of sea water. After 2, 4, 6 and 12 hours transfer sample (ca. 0.5 ml) through time dishes of 10 ml of sea water and culture in half-filled, covered, standard dishes.

Development: Observe the eggs at various times during the lithium treatment and compare their rate and form of cleavage with the controls. Examine the culture twice a day during the next three days, and sketch various types of exogastrulae, noting inhibition of development of arms and endodermal structures, tripodite structure of archenteron, etc. Determine the approximate proportion of normal to abnormal embryos in the four cultures.

Li-treatment of Isolated Animal Halves. Animal halves of sea-urchin eggs isolated in the 3- or 10-cell stage fail to gastrulate generally forming "powerbirostulae". Von Ubisch (1929) made the interesting discovery that lithium treatment would enable some of the animal halves to develop into normal pluteus. Students who are skillful in micro-dissection may substitute this experiment in place of the above, after discussing details of procedure with the instructor.

References:
Child, C. L., 1940 Physiol. Zool. 13: 4-42
Herbert, G., 1892. Zeitschr. wiss. Zool. 53: 46-518
Lindahl, I. A., 1940, Arch. Zellforsch., 140: 163-194
Von Ubisch, I. 1929, Arch. Zellforsch., 117: 30-122
Temini, C., 1942, Medal Institute Letters (Radiol. Sci.) 75: 363-399
Hans Dreisch in 1891 demonstrated that whole embryos may be obtained from isolated blastomeres of the sea-urchin egg. The present exercise is essentially a repetition of that classical experiment with some additional features provided by later work.

Equipment: scissors, blunt forceps, 6" square of cheesecloth, 3 finger bowls, 12 syracuse dishes, 3 stender dishes with lids, 6 embryological watch glasses, 1 test tube, (ca. 5/8" x 6"), 2 fine glass needles, eyepiece micrometer, 3 vaseline-ringed slides and coverslips, 3 ordinary pipettes, 1 narrow long-tipped pipette, 1 fine pipette.

Solutions: 1 liter filtered sea-water
100 ml hypertonic sea-water (30 grams NaCl in 1 liter of sea water)
100 ml of Ca-free sea-water (1000 ml H/2+22 ml H/2 KCl + 195 ml m/3 MgCl·6H2O-103 ml H/3 Na2SO4·16 ml H/2 NaHCO3, adjusted to pH 7.5-8.5 (based on Lyman and Fleming 1942).
50 ml of 5% formalin in sea-water

Removal of Fertilization Membrane. For the purpose of isolating blastomeres the fertilization membrane must first be removed. This is accomplished by shaking a suspension of freshly fertilized eggs. Obtain eggs and sperm of Arbacia or of Echinarchinus in the usual way. Insanminate (noting time) a sample of eggs, check for fertilizability and save to determine first cleavage time (necessary in part (a) below). Later (10 to 15 minutes) fill a test tube about four-fifths full with a freshly washed sample of eggs and insaninate, mixing by inverting the test tube once. About one-half minute later pour about 1/4 of the eggs from the test tube gently into a syracuse dish and examine for membrane elevation. When the membranes have separated from the surface of practically all of the eggs (about 1 to 2 minutes after insanination), shake the test tube ten times rapidly up and down using a full forearm swing and holding long axis of tube in direction of swing with thumb over open end. Four about 1/4 of the eggs into a syracuse dish, immediately shake tube again ten times, remove, another 1/4 of the eggs, repeat a third time and remove the remaining 1/4. Examine the three dishes of shaken eggs and select the one containing the highest percentage of naked eggs. Wash twice with filtered sea-water.

An alternative method of membrane removal uses a pipette with a narrow opening. The opening can be several times the egg diameter. A concentrated suspension of eggs at the time of membrane elevation is rapidly drawn into the pipette, and expelled into an empty dish and examined. If one treatment is inadequate it may be repeated.

Separation of Blastomeres. For this purpose the student may use either the Ca-free sea-water (Herbst, 1900) or the hypertonic sea-water (E. B. Darby, 1940) method outlined below. Remove fertilization membranes from eggs and use the control sample of eggs fertilized 10 minutes before the experimental set to determine expected time of first cleavage of the membrane-less eggs.

A. Ca-free sea-water. At about five minutes before the time of first division, concentrate the membrane-less eggs in the center of the dish by gentle revolution of the dish (the center of the dish
should follow the circumference of a circle about 1 to 2 cm. in diameter and transfer, with the narrow long-tipped pipette, a sample of the eggs with less than 0.1 ml of sea-water through three dishes of 10 ml of Ca-free sea-water. Examine, under high power, a sample of the eggs in the Ca-free sea-water and compare their octoplastic layer with that of the control eggs. After 10 to 20 minutes remove a sample to a dry finger bowl. If the blastomeres have not separated drop the sample rapidly in and out of the pipette several times. Fill the bowl with sea-water and transfer to a small dish half filled with fresh sea-water and cover. This will serve as a mass culture of isolated blastomeres along with some whole eggs. To study pairs of blastomeres from the same egg pick out of the Ca-free sea-water dish, under the dissecting microscope, eggs in which the blastomeres are still together or are close enough together to be recognized as sister. Transfer each pair along with a whole egg to a separate embryological watch glass containing sea-water. If the blastomeres of the pair were not completely separated at the time of selection bong the egg in the dish a few times or separate the blastomeres by means of a glass needle before transferring to the sea-water. After one or two hours mount pairs of isolated blastomeres “lining” a “hole” on each of two or three of the vaseline-ringed slides. To do this place a small drop containing the eggs in the center of the ring, add a coverslip and press it down so that it touches the drop and continues sale is made with the vaseline, but would having the drop touch the vaseline.

B. Hypertonic sea-water. With this method, the eggs (one drop) are picked in the hypertonic solution (about 10 ml) when most of them have just completed the first cleavage but before complete separation of the blastomeres has occurred. Examine, under high power, a sample of the eggs in the hypertonic solution and note the effect on the octoplastic layer. Ten minutes later, transfer the eggs with a minimum amount of solution through three dishes of normal sea-water. The treatment, if successful, causes the octoplastic layer, by which the two blastomeres are joined, to become thin and gelatinous, and the two blastomeres are often widely separated with only a thin film between them. Such pairs may be cultured along with control whole eggs, in embryological watch glasses and on vaseline-ringed slides as described above. They may be picked out at a later stage of development since the pairs generally remain attached by a thin hyaline strand until they are swimming blastulae. Only a few twin blastulae are ordinarily obtained by this method since the great majority fuse together during early development.

Development. Observe and sketch the isolated blastomeres in their 4-, 8-, and 16-cell stages. How many micromeres are formed at what stage? Does the isolated blastomere cleave as though it were still part of a whole egg? At the beginning of gastrulation fix some “half”-embryos and whole embryos in 5% formalin and measure their respective diameters, that approximate ratios are obtained for their respective volumes, surface areas and cell-thicknesses? Examine and sketch the embryos in the completed gastrulae, prism and pluteus stages. Do the “half”-embryos develop at the same rate as the controls? Are the “half”-plutei complete in regard to all structures seen in the whole plutei? Determine whether or not both members of the pairs of isolated blastomeres form normal plutei. (See Korschikoff 1936; Tyler, 1942, and experimental embryology texts for further analysis.)
References:

Fertilization

Use only the pipettes at the stock dishes to obtain gametes. Carelessness will result in contaminating the stock of unfertilized eggs with spermatozoa. The stock dish of eggs will be kept at the front of the room, the stock dish of spermatozoa, at the rear. Care must be taken to avoid inseminating heavily. Too many spermatozoa often cause polyspermy which results in abnormal cleavage and development. Polyspermic eggs of some forms develop more rapidly than normally fertilized eggs. The polyspermic eggs of Nereis, however, usually fail to cleave.

Use the ordinary low power of the compound microscope (approximately 100 diameters magnification, i. e., 10X eye-pieces and 10X objective) for observation and study. This permits maintaining the eggs in a considerable volume of water in a Syracuse watch glass so that concentration of sea water by evaporation is not rapid. Most phenomena can be readily seen with this magnification, which affords excellent definition. Higher powers may be used if one desires to observe spermatozoa in detail under a coverslip. After sperm penetration in Nereis has been followed by observing the eggs in the watch glass for at least 95 minutes, it will be instructive to inseminate a second dish, and periodically mount some of these under a coverslip to observe under higher power. Remember that they remain normal but a short time under these conditions.

// Nereis:

Obtain a few unfertilized eggs in sea water in a Syracuse dish. They are approximately 140 microns in diameter as seen from above and 100 microns high in side view. Because of their shape, they tend to orient on a flat surface with the animal pole either above or below, rectly to the side. Observe the large immature nucleus (germinal vesicle or nucleus of the primary oocyte), and the oil droplets and yolk spheres in the cytoplasm surrounding the nucleus. Note also the thick cortex of the egg.

After becoming familiar with the unfertilized egg, inseminate by adding a drop of freshly prepared sperm suspension. Stir the eggs at once by a circular movement of the dish and observe changes. These first changes will begin a few seconds after insemination. At 21°C., the following schedule applies to 50% of a population of eggs (time after fertilization): 1st polar body, 45 minutes; 2nd polar body, 60 minutes; 1st cleavage 95 minutes (ref. #22). The laboratory will probably be warmer than 21°C., so that development will proceed more rapidly. There are many changes in the egg to observe before the first polar body forms. Observe and record the following: laboratory temperature, time of breakdown of the germinal vesicle, time of final penetration of sperm head through membrane, time of first polar body formation, time of second polar body formation, time of cleavage. The time schedule in the descriptive text below should hold approximately if the air temperature of the laboratory is about 24°C.

If possible, arrange to observe two or more eggs which are touching immediately after fertilization. 2-3 minutes after fertilization they will begin to be pushed apart by transparent jelly secreted by the eggs external to the vitelline membrane. By 20 minutes, the zone of jelly around each egg will be as wide as the egg diameter. The margin of the jelly can often be made out by observing supernumerary spermatozoa and other particles at the edge of the jelly. 5 or 6 minutes after fertilization the vitelline (fertilization) membrane will be noticeable due to the formation of the narrow perivitelline space upon jelly extrusion. At 7 or 8 minutes, the entrance cone begins visibly to form. Find an egg showing a profile view of the entrance cone and the sperm which is to enter. Form 8 to 12 minutes or longer, the sperm is clearly visible outside the vitelline membrane.
conspicuous entrance cone. In the course of the next 8 to 10 minutes, the vitelline membrane is indented slightly at its point of contact with the entrance cone. This tends to obscure the sperm from view to some extent, and at about 20 minutes after fertilization the egg wrinkles, becoming distorted and quite irregular in somewhat ameboid fashion. The entrance cone has already flattened considerably, but is still present, and although the sperm is partially obscured from view, the entrance of its head into the egg is not completed until some time later (ref. #12, 15, 16). The final penetration of the sperm head through the membrane, leaving the middle piece and tail outside, may also be observed. At about 30 minutes, the egg rounds up again, but as the time approaches for 1st polar body formation, the egg elongates in a direction perpendicular to the polar axis. If no eggs lie so that the forming polar body is on the horizon, the dish should be shaken. The 1st polar body may form at about 36-40 minutes, and it lies in the space between the egg and the vitelline membrane. This space is wider in the region of the animal pole than elsewhere. The second polar body often forms at about 50 minutes and normally does so immediately under the first polar body, which is thus lifted into perivitelline space. At perhaps 80 minutes the eggs will begin to divide into unequal blastomeres. Observe 2nd and 3rd cleavage as usual, if time permits. The 3rd division, from 4 to 8 cells, produces 4 micromeres by spiral cleavage (ref. #24).

Place some very recently fertilized eggs of Nereis in a drog of fresh, thick Chinese ink suspension (made up by rubbing a piece of ink on a Syracuse dish moistened with sea water) in the center of a Syracuse dish. As the jelly is secreted, the attached sperm causes a canal to form in the secreted jelly into which particles of ink will penetrate. This is due to inhibition of jelly cut luff at the point of sperm attachment. The ink thus marks the entrance point of the sperm. After the canal has filled with ink, add sea water and, if time permits, observe and record for a number of eggs the relation of the first cleavage plane to the polar bodies and the entrance point of the sperm as marked by the ink (ref. #72, 16, 19). (Caution, do not leave the piece of Chinese ink in a dish of sea water, it will disintegrate).

Nereis: Exaggerated Entrance Cones:

Place some Nereis eggs incubated 5 to 8 minutes earlier in a Syracuse watch glass containing alkaline NaCl (pH 10.3-10.5). Observe immediately. The vitelline membrane will elevate due to a sudden inhibition of jelly release through the membrane and a subsequent accumulation of the jelly in the perivitelline space (ref. #9). The vitelline membrane remains permeable to water which enters the perivitelline space as the jelly swells. The elevation of the membrane stretches out the sperm entrance cone between membrane and egg surface, forming a long filament which frequently causes marked indentation of the membrane. If the eggs have been kept in an ice box they may become polysaccharide upon incubation and show numerous exaggerated entrance cones upon treatment with alkaline NaCl. About ten minutes after treatment the sperm head may be seen moving across the perivitelline space to fuse with the egg surface, at which time the membrane indentation is relaxed. If these eggs are carefully removed from the alkaline NaCl to see water, and washed, some will develop normally within the raised membranes. If left in alkaline NaCl the optimum length of time before washing, and if the alkaline NaCl has been wronged once or twice to remove most of the sea water, the eggs may be completely freed of their membranes. These "naked" eggs have been used for experiments on the development of isolated blastomeres (ref. #8).

Nereis: Centrifuged eggs:

If time permits, centrifuge some unfertilized Nereis eggs in the Emerson electric centrifuge (cover off) for 60 minutes. A layer of 0.95 molar sucrose (undistilled water) at the bottom of the centrifuge tube prevents injury to the eggs. This is
somewhat hypertonic, but provides an adequate support for the Nereis eggs without injuring them in any way. This amount of centrifuging separates the various formed components of the egg into several strata (ref. #7). Insamine the centrifuged eggs after washing off the sucrose with sea water, and observe asymmetrical jelly-extrusion. Is more jelly extruded at the centripetal or centrifugal pole?

If eggs stratified in an ultracentrifuge are available, compare these with the Nereis eggs centrifuged in the Emerson electric centrifuge at about 10,000 X gravity (ref. #10).

Evolving habits of Nereis liisata

Nereis swim in Eel Pond about an hour after dark at certain phases of the lunar cycle. (See Lillie and Just, 1913). On each of two appropriate evenings, about an hour after sunset, half of the class will gather on the floating stage behind the Supply Department to observe this interesting phenomenon.

CHELITOPTERUS

The cheletopterus egg is rather dark and granular. It is slightly more than 100 microns in diameter, but before fertilization the eggs are often not quite spherical. The polar bodies are larger than in Nereis, and the egg divides to form two unequal cells by means of a polar lobe at the vegetal pole (ref. #14, 18).

When the egg is taken from the female it contains a large immature nucleus (germinal vesicle), as does the Nereis egg, but unlike the egg of Nereis, it spontaneously undergoes partial maturation when placed in sea water, even if not fertilized. A number of species of eggs partly mature when they enter sea water and Pastels (ref. #21) has shown that this is dependent upon the presence of calcium in the sea water. Chelitopterus eggs develop quite readily. If eggs are fertilized just after the partial maturation in sea water has been completed, they develop as rapidly as eggs incubated 12-15 minutes earlier when first placed in sea water (ref. #23). (Time counted from fertilization): 1st polar body 14.5 minutes; 2nd polar body, 27 minutes; "pear" shaped stage, 46 minutes; polar lobe, 52 minutes; cleavage with polar lobe attached, 58 minutes; completed cleavage with polar lobe resorbed into one blastomere, 62 minutes; 4 cell stage, 82 minutes.

When the laboratory air temperature is about 24°C the development will be more rapid, and about at the rate indicated in the descriptive text below.

When eggs are taken from the female, the large immature nucleus is in the center of the egg. After about 15 minutes in sea water, maturation will have proceeded to the metaphase of the first polar spindle at which stage development is arrested unless the egg is inseminated or artificially activated. The spindle cannot be distinguished as such in the living egg, but it will be observed that the relatively clear region of the nucleus and spindle is now located quite eccentrically. It reaches the surface of the egg in the polar region, where the polar bodies will be given off.

If eggs are now lightly inseminated and stirred, a few sperm may be seen adhering to the eggs almost immediately. Within 5 or 6 minutes, the vitelline membrane may be seen to separate from the egg surface, after which time it is called the fertilization membrane. It is not conspicuous and does not elevate much above the egg surface. By 10 or 12 minutes, the eggs, which had become almost spherical after fertilization, are seen to elongate in an axis perpendicular to the polar axis. This is preparatory to formation of the 1st polar body at about 12 minutes. In this division the egg thus assumes approximately the shape of a blastomer, although the polar body is a vestigial cell. After the first polar body forms, the egg
again rounds up (16-19 minutes), but it elongates again in the same manner to form the second polar body at perhaps 23 minutes. The second polar body often forms under the first, which is thus pushed away from the surface of the egg. The egg again rounds up (26-30 minutes); the egg pronucleus may now sometimes be seen migrating toward the center of the egg, and occasionally the sperm pronucleus may also be detected. By 35 minutes, the clear zone has extended from the polar region toward the equator of the egg, and at 37-40 minutes a typical "pear shaped" stage is reached. The polar bodies lie at a position corresponding to where the sperm attaches to a pear, and the bulge which forms the polar lobe begins quite suddenly at the anti-polar end of the egg (40-43 minutes). When the polar lobe is fully developed, however, it corresponds to the stem end of the "pear", and the polar bodies are opposite.

Observe the extrusion of the polar lobe which contains coarse globular material. By 47-48 minutes the cleavage furrow begins at the animal pole and passes to one side of the polar lobe, which thus comes to be attached to one of the two blastomeres. The resorption of the polar lobe into this blastomere causes it to become larger than its mate, and at about 51 minutes two smooth unequal blastomeres lie against each other. Polyspermic eggs will now often be in an abnormal 3 cell stage. By 60 minutes the two blastomeres are quite fused together. At 67-70 minutes the second cleavage takes place. The large blastomere again forms a polar lobe, and a 4 cell stage results with one blastomere larger than the other three. By 90 minutes, or earlier, the clear nuclei in the 4 cells may readily be made out. At 93-97 minutes the third division takes place, forming 4 relatively large micromeres. A profile view will reveal the macromeres, micromeres, and polar bodies. A polar view will show the rotated displacement of the micromeres, resulting from spiral cleavage, although the displacement is not great or conspicuous in Chaetopterus.

CONCENTRATION AND ACTIVITY OF SPERMATOZOA:

Place a small shallow drop of "dry" spermatozoa directly from the testis on a slide. The sperm must not be diluted with any sea water whatsoever. Sea urchin spermatozoa are good for this because it is especially easy to obtain them "dry" directly from the testis. Place a drop of sea water nearby on the slide so that it does not touch the drop of spermatozoa. With ordinary low power (approx. 100X) examine the spermatozoa and note the degree of activity especially at the edge of the drop where they may be seen more readily. Now take a small glass rod, or a match stick, or other object and draw its tip from the drop of sea water into the drop of spermatozoa so that a connecting bridge is established. As the sperm diffuses into the sea water a gradient of concentration is established. Note swimming activity in relation to concentration.

CUMINGIA:

If Cumingia eggs are available, observe the migration and fusion of the pronuclei. While Cumingia eggs are small (about 60 microns in diameter) they are clear and show the pronuclei in the living state especially well. The cytoplasmic constituents of these eggs are very readily stratified into four zones in the centrifuge.

SPECIAL PROJECTS:

During spare time students may undertake special projects relating to fertilization or cell-lineage. The following problems are suggested, but students may formulate their own projects subject to the approval of the instructor.

1. Fertilization of Platynereis. Collect Platynereis from the Caydetta Wharf floating stage at the right phase of the moon. Consult E. E. Just's papers on
breeding habits and fertilization. Compare your observations with those on Nereis libra.

2. Development of Isolated Blastomeres of Nereis. Remove membranes of inseminated Nereis eggs by the alkaline NaCl method previously described. Use semi-sterile technique with all dishes and instruments. Make Spemann glass needles after directions of Herstattius in McClung's Microscopical Technique. Use small watch glasses (preferably Columbia) with a thin layer of filtered agar made up in sea water, as operating and isolation dishes. Separate the blastomeres with the fine tips of the glass needles immediately after the cleavage furrow is complete. Transfer to separate isolation dishes with mouth pipette and permit isolated blastomeres to develop in cool moist chambers. Observe at frequent intervals.

3. Development of Centrifuged Nereis Eggs. Centrifuge Nereis eggs for 60 to 90 minutes in Emerson electric centrifuge with cover off (or in air turbine, if available), with sucrose, as previously described. Wash off sucrose in sea water, inseminate and study cleavage. Statistics as to the number of AB and CD blastomeres forming from centrifugal or centrifugal ends of the centrifuged eggs would be of interest. Position of micromeres may also be noted in relation to stratification and in relation to egg polarity.
ECHINODERM DEVELOPMENT

Arbacia punctulata

This species is usually ripe from mid-June to mid-September in the Woods Hole region. When stored in laboratory aquaria they may maintain their ripe condition even beyond the breeding season and supply apparently normal eggs and sperm. In general, however, it is safest to use animals within a few days after they are collected.

While in some species of echinoids the sexes may be distinguished externally (see Marx, 1931), no differentiating characteristics have, as yet, been described for A. punctulata. The sexes are readily identified after the animals are opened by the deep-red or purple ovaries and the yellowish-gray testes, or, if unopened animals shed spontaneously, by the red eggs and the white sperm.

Obtaining the gametes:—Any of the following methods may be used.

1) Cut around the peristome and remove the Aristoteles's lantern. Pour out the body fluid and place the animal, aboral side down in a dish containing a small amount of sea water. The animals then frequently shed thru the gonopores. After 10 minutes remove any eggs that have been shed to a finger bowl (or other large flat dish) containing ca. 200 ml of sea water. Sperm should be kept in concentrated suspension or "dry" (ie. as it exudes from the testes). b) Cut around the testes about half way between the mouth and the equator and proceed as in a. Shedding is more frequently obtained by this method, but there is also more likelihood of cutting the gonads. c) Cut as in b, pour out body fluid and remove gonads (at gonoduct end) with blunt forceps, spatula or spoon. The ovaries should be placed in about 200 ml of sea water in a finger bowl and allowed to shed. If undisturbed the eggs are extruded in compact clumps or strings and may be readily removed to a fresh dish without ovarian tissue by means of a wide-mouth pipette. If large quantities of eggs are desired the ovaries should be allowed to shed for about ½ hour with occasional stirring, then poured gently thru washed (and sea water soaked) cheesecloth or bean skin.

d) Inject about 0.2 ml of 0.5 KCl into the peristomial cavity. Ripe animals will begin to shed within 2 minutes. The eggs can be collected by inverting the animal in a dish of sea water or by washing the eggs gently from the surface of the animal with a pipette. The sperm should be removed "dry" or in concentrated suspension.

Spermatozoa:—Upon dilution with sea water the sperm become temporarily intensely active. They lose their motility sooner in concentrated than in dilute suspension, due presumably to the more rapid accumulation of CO₂. On the other hand their ability to fertilize eggs is lost more rapidly in dilute than in concentrated suspension. (See F. R. Lillie, 1915; Cohn 1912; Hayashi 1945). When kept in the cold 2°C) "dry" sperm may remain good for several days. At room temperature dilute sperm suspensions may lose their fertilizing power in an hour or less. It is advisable, then, to use freshly diluted sperm for fertilization.

The head of the sperm is comprised of acrosome, nucleus and mid-piece that are roughly 0.3 and 1 microns respectively in length and 0.3, 1.3 and 1.2 microns in greatest width. The tail is about 45 microns long and 0.1 micron in greatest width. Its axial filament protrudes a short distance beyond the end of the shroud. Examine under oil immersion and sketch a spermatozoon. Examine moderately.
active spermatozoa under high-dry and describe their mode of swimming.

Unfertilized Eggs:- Arbacia eggs complete both meiotic divisions while still in the ovary and the polar bodies very seldom remain attached when the eggs are shed. Occasionally, especially from relatively unripe animals or after macerating ovaries, eggs may be found that are in the germinal vesicle (diakinesis of primary oocyte) stage recognizable by the large clear nucleus (about on-half egg diameter) and nucleolus. Such eggs may exhibit some surface response to sperm but they do not develop upon insemination. The ripe egg (75 microns diameter) has a small clear nucleus. It contains uniformly dispersed pale yolk granules and slightly larger red granules containing pigment called echinochrom which is a substituted naphthoquinone related to the K. vitamins. (Ball, 1936, Hartmann et al. 1939, Tyler 1939). Upon centrifugation mitochondria and oil sphules are also distinguishable. The nucleus is generally located excentrically. Since the polar bodies are not usually present the position of the nucleus with respect to the polar axis is not readily determined. Occasionally however, batches of eggs are obtained in which the polar bodies are articulated. In these, observations (Hodoley, 1934) have shown that the nucleus may lie in any part of the cytoplasm between the cortex and the center. In the transparent gelatinous coat (about 30 microns wide) of the egg there is a funnel-shaped space which generally lies in the polar axis. The funnel is rendered visible by straining the jelly with Jones green or by placing the eggs in a suspension of Chinese ink. For this purpose the eggs should be taken immediately after shedding since the microscope (funnel) may disappear as the jelly swells. Examine and sketch some unfertilized eggs under high power noting features described above.

Centrifuge a sample of unfertilized eggs at about 10,000 r for 8 hour and sketch one in "side view" noting the following five layers of stratified material:- oil cap (centripetal end), byline zone, mitochondria, yolk zone and pigment layer (centrifugal end). Where is the nucleus located? Have these granules in the cortex of the egg (see second paragraph below) been displaced?

Fertilization:- Insominate a sample of eggs, using one drop of freshly diluted 1% sperm (one drop of "dry" sperm in 5 ml of sea water) for each 10 ml of freshly washed dilute egg suspension (containing about 5,000 eggs per ml). Stir the dish immediately after adding the sperm and observe the process of membrane elevation. How soon does it begin? when is it completely separated from the surface of the egg? When does the perivitelline space attain its maximum width? Measure the diameters of an unfertilized egg and an egg at 10 to 15 minutes after fertilization. Is there any appreciable difference in volume apart from that of the perivitelline space?

The spermatozoön enters the egg within a few seconds after attachment. To observe the process place a drop of eggs in the center of a绘line-ringed slide and add a drop of sperm of just sufficient concentration to fertilize all of the eggs. Add a coverslip and locate as quickly as possible an egg that shows only one spermatozoön on its surface. Note the changes that occur upon penetration of the sperm. Where does membrane elevation first begin? In the cortex of the unfertilized egg there is a single layer of granules which disappear (Koester, 1939) upon fertilization and contribute (according to Runnström, 1944) to the formation of the fertilization membrane. These are best
seen in the hyaline zone of the centrifuged eggs. Inseminate a sample of centrifuged eggs on a slide, as described above and observe the behaviour of the cortical granules. Dark-field illumination shows a bright reddish "luminous" layer on the surface of the unfertilized egg. The luminosity diminishes and becomes paler upon fertilization (Runnström, 1928; Ohman, 1945) Using the dark-field stop disc for the condenser of your microscope examine a sample of unfertilized and fertilized eggs.

Preliminaries to Cleavage: At 10 minutes after fertilization a hyaline layer (about 1 micron wide) forms on the surface of the egg. This layer later follows the cleavage furrows and is the material by which the blastomeres are held together. In calcium-free sea water the hyaline layer disappears.

The sperm cannot be distinguished in the living egg. At about 15 minutes after fertilization (at 20°C) a sperm aster is visible as a spherical region containing clear rays extending from a clear center. This attains its maximum development at 20 and 30 minutes. Then a clear streak appears in the egg slightly above the equator and at 45-50 minutes this is replaced by two clear areas, the asters of the first cleavage spindle.

Cleavage:—The following figures give the average time for the first three cleavages (after Fry, 1936).

<table>
<thead>
<tr>
<th>Cleavage</th>
<th>First</th>
<th>Second</th>
<th>Third</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes after fertilization:</td>
<td>42 (25°C); 113 (15°C)</td>
<td>107 (20°C)</td>
<td>145 (20°C)</td>
</tr>
</tbody>
</table>

Different batches of eggs vary slightly (1-2% in average cleavage time) and, while within a batch of eggs most will develop at the average rate, some may vary by about 10%. For any temperature between 15°C and 25°C the average time of development can be calculated from that at 20°C by means of the following formula:

\[
\log \text{(time at temp.6)} = \log \text{(time at 20°C)} - (t=20) \times 10. \log 2.6
\]

Temperatures above 30-32°C are lethal for Arbacia eggs. The first three cleavages divide the egg into eight equal-sized blastomeres. The planes of the first two cleavages are meridional (in the polar axis), that of the third is equatorial or horizontal (at right angles to the polar axis). Follow the progress of the cleavage furrow in dividing eggs. Note that the hyaline layer forms the surface of the furrow, and later, when the cells flatten against one another, that it forms the boundary between them.

At the fourth cleavage the upper four cells divide meridionally forming eight equal cells called mesomeres, while the lower four cells divide unequally and horizontally forming four large cells called macromeres and below them, at the vegetal pole, four small clear cells called micromeres. At the fifth division the eight mesomeres divide equally and horizontally forming two tiers of cells termed an1 and an2 cells divide in more or less radial direction while the macromeres divide horizontally forming two tiers termed veg1 and veg2. Veg is next to micromeres which have also divided at this time but which do not form distinct layers. Layers of cells are not readily distinguished in later cleavage stages and no special designation is applied to the cells after the 64-cell stage. It has been shown (see Horstadius, 1939)
that the animal, ventral, and vegetal cells form the larval ectoderm; the vegetal cells form endoderm and part of the mesoderm (celom and 2nd mesenchyme); the micromeres form the mesoderm (primary mesenchyme) which produces the skeleton. Sketch the various stages up to the sixth cleavage.

Blastula: At the eight cell stage there is a very small central cavity which enlarges as cleavage continues, to form the blastocoele. At about 6 hours after fertilization a smooth-surfaced spherical young blastula is formed, the wall of which is one-cell thick. Cilia soon develop on the surface and the blastula is rotated by their action within the fertilization membrane. At about 10 hours the blastula hatches out of the fertilization membrane. It has been shown (Kopac, 1911) that the blastula releases a "hatching enzyme" at this time that weakens and dissolves the membrane sufficiently for the blastula to break thru. A small tuft of long cilia develops at the animal pole of the blastula which is the forward end when it is swimming. At the base of this apical tuft the blastula wall is thickened, forming the apical plate. At the vegetal pole the blastula wall becomes flattened and the micromeres migrate into the blastocoele, forming the primary mesenchyme which gives rise to the skeleton. Sketch early and late blastulae.

Gastrula: At about 20 hours after fertilization the cells at the vegetal pole invaginate to form a blind tube, the archenteron. This reaches the opposite end of the blastocoele in about five hours. The gastrula contains about 1000 cells and its outer wall as well as the wall of the archenteron has a single layer of cells. The primary mesenchyme cells form a ring around the blastoporal end of the archenteron. Secondary mesenchyme end later, celom are budded off from the tip of the archenteron. Draw beginning and completed gastrulae.

Prism: At the completion of gastrulation the tip of the archenteron turns to one side of the gastrula which becomes flattened over an area extending from the animal pole nearly to the blastopore. This is the first sign of bilateral symmetry, the flattened area representing the ventral side of the embryo. The primary mesenchyme cells aggregate in two groups, one on each postero-ventral side, and each group secretes a triradiate spicula, the beginnings of the skeleton. Where the tip of the archenteron touches the ectoderm there is formed a depression which later acquires an opening into the archenteron to become the stomodeum. The archenteron becomes divided by two constrictions into oesophagus, stomach and intestine. The apical tuft disappears, a ciliated band surrounds the oral field, the embryo begins to elongate in the dorso-ventral axis and the direction of swimming changes so that the ventral side is forward. Draw a prism larva.

Pluteus: After about 48 hours the embryo enters the pluteus stage which is fully developed at the end of the third day. The original apical plate grows out in a ventral direction to form the oral lobe which includes the stomodeum and anterior part of the oesophagus. Two short outgrowths, the oral (anterior-lateral) arms, are formed on the oral lobe and, at the anal side, two longer anal (aboral or posteral) arms grew out in the same general direction. The original triradiate spicules form skeletal rods which extend into the oral arms (oral rods) the anal arms (anal rods), dorsally through the body (body rods) and laterally (ventral transverse rods). The rods are each made up of three or four parallel parts united by cross bars. Different species of sea-urchins differ in this regard, so the structure of the skeletal rods is a useful characteristic in hybridization studies. The embryo con-
continues to elongate in the dorso-ventral direction and becomes pointed at the postero-dorsal end where the body rods meet. The axis running thru oesophagus, stomach and intestines becomes J-shaped. The stomach expands to form a spherical structure that fills a large part of the body of the pluteus and sphincter muscles connect it with oesophagus and intestine. The two coelomic sacs extend postero-laterally from the oesophagus. That on the left side becomes larger and later acquires a dorsal opening called the pore canal. The right coelom buds off cells to form the madreporic vesicle but otherwise remains rudimentary.

The left coelom undergoes extensive later development in the formation of the structures of the adult sea-urchin. These changes do not occur until the second week when metamorphosis begins in properly fed larvae and will not be studied here. It should be mentioned, however, that the adult organs are built up in and around a structure termed the Echirvix, which is formed by the fusion of an invagination (peristomalon) of the ectoderm on the left side with the mid-portion (hydrocoel) of the left coelom. The left side of the pleuerus sacs, then, the future oral face of the adult. Draw a 3 day old pluteus in postero-ventral and side view.

References:

A) Obtaining gametes, maturation and fertilization:

The sexes are separate in Asterias, but it is not possible to distinguish them on the basis of external characteristics. Only animals with soft, bulging arms are fully ripe, and it is a waste of material to open small, hard-skinned starfish in an attempt to obtain gametes. Fill two 1750 cc. finger bowls with clean sea water from a 2-liter flask in which the sediment has been permitted to settle by about fifteen minutes of standing after withdrawal of the sea water from the top. With large scissors, make a small puncture in one arm close to the disc, and pipette a few drops of cells from the gonad to ascertain the sex of the animal. If the animal is a female, remove this arm completely, and slit it along the mid-dorsal line to expose the bulging pair of ovaries, of a typical pale salmon color. Then with a pair of forceps carefully detach each plume-like ovary by grasping it near its point of attachment at the disc end, closing the gonaduct, and rinse it with as little injury as possible in the first bowl of sea-water, then transfer it to the second bowl. The animal from which the arm has been separated may be returned to a separate aquarium of running sea-water, and other arms may be used for gametes later in the day. Such an injured female will not keep indefinitely, however, and gametes are rarely usable at the time the animal begins to show autotomy. Do not cut up to ovaries in the bowl of sea water, merely allow the eggs to ooze from the blunt end of the ovaries for a period of five minutes. At the end of this time, remove
the ovaries to another container, or discard them. The best eggs are those first shed. Gently stir the water in the large finger bowl and allow the eggs to settle. Settling occurs very slowly. Then pour off the supernatant sea water and carefully replace with an equal volume from a 2-liter flask. Then leave the eggs undisturbed, without shaking or stirring, for about 20 to 30 minutes. During this time small samples may be removed with a pipette for examination under the microscope, and the stage in germinal vesicle breakdown observed. Note the jellyburl about the eggs. This may be demonstrated more readily in dim illumination or by adding a trace of Janus Green to one slide preparation. Eggs from a ripe female which was kept under proper conditions of coolness and adequate oxygen supply from the moment of collection, and properly manipulated in obtaining gametes, should show 85 to 90% germinal vesicle breakdown at approximately the same time. Retain a good sample of eggs in a small finger bowl to follow the maturation stages through the second polar division in the uniseminated eggs.

If the animal opened is a male, the testes will be white or ivory. Since it is important to use a fresh sperm suspension, this animal may be placed in a dry finger bowl until the eggs are ready for fertilization. Then a single testis is removed, rinsed in clean sea water, and a small piece from the blunt end cut off and placed in 200 cc sea water. Two or three pipettes of this suspension should be added to a 1750 cc finger bowl of eggs, with an immediate but not violent rotational movement to ensure complete mixing. The optimum period for fertilization is after the breakdown of the germinal vesicle and before the first polar body has been extruded. It is, therefore, convenient to inseminate when the distal end of the first maturation spindle begins to protrude above the previously smooth surface of the egg, in a fair percentage of the eggs showing germinal vesicle breakdown. Eggs inseminated in the stage of the intact germinal vesicle are non-fertilizable. Even tho they may elevate a fertilization membrane they do not develop further. The details of sperm penetration may be readily studied, if the observer examines the eggs without delay. It was in the egg of the starfish that Foul (1876) first observed the actual penetration of an egg by a sperm. Chambers (1930) has confirmed these early observations. A microscope with clear objectives, clean slides and covers, and good illumination are prerequisites for observing the finer details of this process in the laboratory. It must be remembered that the egg of Asterias is very delicate as compared with most eggs used for routine laboratory work. Satisfactory results are not obtained without taking adequate precautions. Important precautions are: (1) to avoid contaminating either type of gamete with perivitelline fluid—it is because of this that the gonads are rinsed; (2) do not overinseminate; (3) do not crowd the eggs; there should be no more than one layer of well-spaced eggs on the bottom of the dish; (4) use only fresh, motile sperm.

Cleavage: The blastomeres of Asterias are rather loosely connected, because the perivitelline space is wider and the hyaline plasma membrane thinner and weaker than in the Arbacia egg. Note the relation between the first and second polar bodies and the fertilization membrane. Chambers has pointed out that in the absence of fertilization membrane, the blastomeres tend to separate completely. Because of the relative transparency of the yolk of this egg, details of living asters may be seen.
A detailed study of the cleavage of this form is usually not undertaken by students of the course unless they have a special interest in this material, but the later stages are of considerable significance.

Later Stages:

To raise Asterias to late-embryonic stages, it is necessary to change the sea water in the culture dishes at about half-hour intervals during early cleavage to eliminate the excess sperm which would otherwise foul the culture. Then, when the first swimming stages (blastulae) appear, the upper half of the culture, containing the more normal top-swimming blastulae, is poured off into a series of tall battery jars which are subsequently filled to the top with fresh sea water. Care must be taken to avoid carrying over dead embryos of unfertilized eggs. Tall jars are superior to shallow dishes, since evaporation in considerably reduced. It is essential that relatively few larvae be placed in a jar. Early bipinnaria may be obtained without special feeding but the cultures of Asterias larvae must be fed diatoms (prepared by Just's method) to obtain brachiolaria or later stages.

References:

Dulac, Y. 1904. Étude sur les larves parthénogénétiques d'Asterias glacialis. Arch. de Zool. Expér. 43 Ser. 2

Just, E. 1939. Basic methods for experiments on eggs of marine animals. Blackiston, Phil.

Asterias Forbesii

E. Development

Prepare your own cultures for early stages and use those prepared by the assistant for stages from blastula on. Development up to the early Bipinnaria (Dipleurula) can be followed on living material. Older Bipinnaria, Brachiolaria larvae and metamorphosis stages will be studied on stained whole mounts. Whole mounts of early Bipinnaria are also available for comparison. It is advisable to begin with early gastrula stages and follow the development through to the Dipleurula.
Study fertilization, cleavage and blastula later on, using your own cultures. Consult the illustrations in *Embryology*, Agassiz (1877) and *Germ Cell* (1914). See time table in appendix.

1. **Fertilization** (see lab directions for "Fertilization")

2. **Cleavage.** The first two cleavages are pericellular, that is, they go through animal and vegetal poles and are perpendicular to each other. The third cleavage is horizontal, the eight cells of this stage are approximately equal in size. In the 16-cell stage, no definite arrangement of cells in rows takes place, and cleavage from now on is irregular. Throughout these early cleavage stages the blastomeres have a tendency to assume spherical shape, resulting in a rather loose arrangement of cells.

3. **Blastula.** Eventually the cells arrange themselves in an epithelial wall enclosing the blastocoele. The surface cells acquire cells, and the blastula rotates within the vitelline membrane. The two polar bodies are still visible, either attached to the animal pole, or detached from the embryo. The embryonic hatches in the late blastula stage.

4. **Early gastrula.** The vegetal pole area thickens and flattens and invagination begins. The blastopore is destined to become the anus. The larva elongates along the animal-vegetal axis.

5. **Middle and late gastrula.** The gastrula becomes pear-shaped. The blind inner end of the archenteron becomes thin-walled and expands. From this end mesenchyme cells wander out into the blastocoele. In a slightly later stage, two outpocketings of the distal end become distinct, the primordia of the coelomic sacs. At the same time, the archenteron bends towards one side which is the future ventral side. This is the first sign of the change of radial into bilateral symmetry. Note the ciliation in the archenteron.

6. **Transition to Diplobranchia-larva.** The blind end of the archenteron bends sharply towards the ventral body wall, makes contact with an ectodermal depression, the stomodeum, and the mouth breaks through. The two coelomic vesicles have been constricted off from the archenteron. The left one is larger from early stages on. It forms a tubular outgrowth to the dorsal body wall which opens to the outside. This is the pericardial lobe.

7. **Fully formed Diplobranchia (early Bipinnaria) larva.** This larva represents an early larval type common to Asteroidea, Echinidea, Ophiuroidea and Holothuroidea (see Korschelt, *vol. 1 p. 403*). Study carefully a ventral, dorsal and lateral (preferably left) view.

Observe the following:

Shape of larva. Notice convexity of ventral side and mouth opening underneath the overhanging oral lobe.
Locomotion

Ciliation. Small cilia cover the entire surface. The ciliary band is at first continuous, a longitudinal band with two cross bars. The longitudinal band above the upper cross bar loops towards the midline. Eventually the loops meet in the midline, and a frontal field, the pre-oral ciliary band is separated in the upper ventral part of the larva, overhanging the oral field. This separate frontal field is characteristic of Asterozooid larvae. Observe carefully the course of the entire longitudinal band. Observe the beat of the cilia in dark field illumination, if available.

Alimentary tract. The three parts, characteristic of Echinoderm larvae: oesophagus (with constriction near entrance into stomach), stomach and intestine. Observe in lateral view the bend of the intestine. Study ciliation in oral field and different parts of the tract.

Coelom. Study the two coelomic vesicles from all sides. They are clearly visible at the lower end of the oesophagus near its entrance into the stomach. A subdivision of the vesicles is not yet clearly demarcated, but the narrow tube connecting the larger left coelomic vesicle with the dorsal body wall, the pore canal, and its opening, the madreporic pore, can be readily seen. Loose mesenchyme cells are scattered in the body cavity which is the persisting blastocoel.

Vital staining with neutral red is helpful; but study unstained specimens first. Study also stained whole mounts of these stages.

The following stages are rarely found in dredges of plankton and difficult to raise from eggs in the laboratory. Prepared and stained whole mounts will be provided.

8. Fully formed Bipinnaria. Consult figures in Gemmill, MacBride, and Agassiz. This larva is characterized by a number of pairs of lobes or arms which grow out from the margin of the ctenoderm and which carry the ciliary band along. They are not supported by skeleton. Pairs of arms follow each other in succession. Young stages may not have all arms developed.

Arms. Identify unpaired median dorsal, paired anterior dorsal, posterior dorsal, posterior lateral, postoral and procoral arms. See Gemmill, plate 18, fig. 7, and MacBride, p. 466.

Intestinal Tract

Coelom. The coelomic vesicles have grown out into long tubes and have fused in the anterior part of the larva. No further subdivisions have yet occurred.

The Bipinnaria arms are long, hollow tubes. The three Brachiolaria arms (brachia) are short. They contain diverticula of the coelom. They are not ciliated but their end discs differentiate small papillae and can adhere to the substrate.
A sucker, the gland cells of which secrete a sticky substance, is formed between the brachia. Brachia and sucker serve for attachment of the larva to the substrate in later stages of metamorphosis. (Gemmell, p. 250).

Intestine

2-celom, in different stages of subdivision

Disk, or developing starfish, on left side.

In late stages of metamorphosis, the anterior part of the larva in front of disk shrinks to form the stalk which is attached to the substrate by sucker and branchia and which carries the Asterias enlage at its distal end. For details of metamorphosis consult Gemmell, McCabe, and Korschelt.

Echinarchinus para

Obtaining gametes

The sexes are separate in Echinarchinus (the sand dollar) but it is impossible to distinguish the male from the female by superficial examination. A cut is made about one-quarter inch from the margin around the entire animal through both oral and aboral calcareous skeletal parts. Then a scalpel is carefully inserted, just beneath the oral skeleton, separating the oral and aboral portions. The oral portion is lifted away and discarded, taking care not to destroy the gonads, which adhere to the aboral portion. The aboral portion is then placed (outside surface down) on a clean, dry Syracuseo watchglass. If the animal is ripe, gametes will ooze from the gonads. Allow the opened male to remain undisturbed until the eggs are to be inseminated. The ovaries of the female are a reddish purple color, and the eggs are usually mixed with an opalescent or milky peri-visceral fluid. From the female carefully pipette the eggs to a small finger bowl of sea water. After allowing the eggs to settle, carefully pour off the supernatant fluid and replace with fresh sea water. If the females are not in good condition (if the eggs do not readily stream from the ovaries), the gonads may be removed with a forceps to a finger bowl of sea water, and the egg suspension strained through clean, washed cheesecloth previously soaked in sea water.

Fertilization

The eggs of Echinarchinus are larger than those of Arbacia (135 microns as compared with 75) and surrounded by a much thicker jelly-hall in which beautiful red pigment granules are suspended. The egg itself, free of the jelly, is pale yellow. Examine the unfertilized eggs under low and high magnification. Then inseminate the eggs as was done in the case of Arbacia, and examine the eggs immediately after adding the diluted sperm suspension. Because of the relatively large size of the egg, the fertilization reaction may be readily followed. Membrane elevation proceeds from the entrance point of the sperm around the egg cortex in a wave. The membrane begins to elevate in from seven to twenty-five seconds after sperm penetration, and is completed in from nine to thirty seconds after it begins. Since sperm
penetration occurs from fourteen to forty-five seconds after insemination, both processes (i.e., sperm penetration and membrane elevation) may be completed within about 40 seconds after insemination (Just, 1919).

Cleavage of the egg of *Echinarchinus* is not markedly different from that of *Arbacia*, and unless this form is of special interest to the student, detailed drawings of the cleavage need not be made. One culture should be prepared and kept to provide plutei for comparison with those of *Arbacia*.

References:

Bibliography on Echinoderm Development

1. Normal development and metamorphosis

------ 1941. The cytology of fertilization and cleavage of Arbacia punctulata. Turtox News, vol. 19, no. 7

11. Experimental: general reviews:

Huxley, J. and Duber, R. 1934. Elements of Experimental Embryol.

DIAGRAMS OF PRESUMPTIVE TERRITORIES BEFORE GASTRULATION
IN CHORDATES (Modified from Pasteels, 1937 and Vogt, 1929)

1. Ascidiella
2. Petromyzon
3. Anuran
4. Urodele
5. Teleost
6. Reptile
7, 8, 9. Chick

Notochord
Nervous Syst.
Ectoderm
Lat. mesoderm & somites
Endoderm & yolk
PROSPECTIVE FATE MAPS AND GASTRULATIVE MOVEMENTS IN TELEOSTS
(After Oppenheimer, QRB,1947; and Pasteels, 1936)

1. Fundulus
2. Salmo

- mesoderm
- nervous system
- endoderm
- notochord
- prechordal plate

3.
- somites
- lateral & brain
- ventral mesoderm

4.
- Unbroken arrows - movements on the surface layer
- Broken arrows - movements in deeper layer

5.

Arrows on left (broken) indicate movements of mesodermal elements; those on right (unbroken) indicate movements in the morphogenesis of the nervous system. Figs. 3, 4, 5, 6, Salmo (Pasteels, 1936)

(not complete agreement on movements -
Luther, fig. 9, 1937a; Schematic representation of three theoretically possible types of embryogenesis after substitution of embryonic sectors with extraembryonic material.

Luther, fig. 2 (part), 1936a; Sectors of the blastoderm of the earlier (a) and later (b) gastrulae of Salmo isolated on the yolk-sac epithelium. Symbols as before (cf. Pasteels, 1936)
general References:

Further references relating to laboratory work:

23. Wilson, E. B. 1892, Cell lineage of Norcis, J. Morph. 6, 361

Lunar Periodicity references:

3. Kompolmann, Fr., 1911 (Norcis dumerillii) Zoologica, Bd. 25, Tokyo 17

Recent Additions to the Literature on Fertilization:

Morphology of Fertilization:

Experimental Analysis:

Recent Papers of Interest:

5. Rothschild, L. 1950 The fertilizin reaction in the sea urchin egg; the effect of nicotine. J. Exp. Biol., 27:400

Recent Additions to the Literature on Echinoderm Development:

Descriptive:

Experimental: Reviews
Echinoderm development - recent papers of interest:

<table>
<thead>
<tr>
<th></th>
<th>Author(s)</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td></td>
<td>1950</td>
<td>Transplantation experiments to elucidate interactions and regulations within gradient systems of the developing sea urchin egg.</td>
<td>J. Exp. Zool., 113:245</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY FOR COELENTERATES

MONOGRAPHS, KEYS, SPECIAL WORKS

1903 XLIV. The Scyphomedusae. Ibid., 37: 331-345

A. GENERAL EMBRYOLOGY, DESCRIPTIVE

Toissier, G. 1926 Notes critiques sur la morphologie des gonophores chez les hydraires. Arch. de Zool. Exper. et Gen. 65: 75-86

B. SPECIAL TOPICS - HERMAPHRODITE GONOPHORES, NORMAL AND EXPERIMENTAL

Bunting, Martha (listed above)

1927 Studien über Geschlecht und Geschlechtszellen bei Hydroiden. 1. 1st Clava squamata (Müller) eine gonochoristische oder hermaphrodite Art Rau's Archiv. 109: 513-534
1927 11. Auspressungsversuche an Clava squamata (Müller) mit Mischung von Zellen aus Polypen desselben oder verschiedener Geschlechts. Ibid., 110: 89-148

C. SPECIAL TOPICS * SYNCHRONOUS SPAWNING AND ITS RELATION TO LIGHT

Brooks, W. K. (listed above)
Hargitt, C. W. W W
Hargitt, C. T. " "
Mayr, A. G. " "

Smillie, W. M. (listed above)

D. SPECIAL TOPICS - ISOLATION OF BLASTOMÉRES

Beckwith, C. W. (listed above)
Hargitt, C. W. " "

Teissier, G. (Listed above)
Torrey, H. B. " "

E. SPECIAL TOPICS - REGENERATION AND AXIAL GRADIENTS

REGENERATION FROM CELLULAR AGGREGATIONS

Beadle, L. G. and Booth, F. A. 1938 The reorganization of tissue masses of Cordylophora lacustris and the effect of oral cone grats, with supplementary observations on Obelia gelatinosa. Jour. exp. Biol. 15: 303-326

Föyn, B (Listed above)

REGENERATION FROM NON-DISSOCIATED CELLS

Barth, L. G. 1940 The process of regeneration in hydroids. Biol. Rev. 15:405-420

Child, C. M. 1941 Patterns and problems of development. U. of Chicago Press (Contains references to all Child's papers)

Gilchrist, F. G. 1937 The hydroid polyp Corynophora pelma as gestalt and as history. Am. Nat., 71: 382-403

Lund, E. J. 1921 Experimental control of organic polarity by the electric current. I. Effects of the electric current on regenerating internodes of Obelia cornissurata. J.our. Exp. Zool. 34: 471-493

1923 III. Norman and experimental delay in the initiation of polyp formation in Obelia internodes. Ibid., 37: 69-88

1924 IV. The quantitative relations between current density, orientation and inhibition of regeneration. Ibid 39: 357-380

Morgan, T. H. 1906 Hydranth formation and polarity in Tubularia. Ibid. 3: 501-516

Morgan, T. H. 1909 The dynamic factor in regeneration. Ibid., 16: 265-276

Morse, M. 1909 The autotomy of the hydranth of Tubularia. Ibid. 16: 172-182

Peabody, Florence 1900 Experiments in regeneration and in grafting of Hydrozoa. Ibid, 10: 435-488

PAPERS ON SCYPHOZOA

Korschelt, E. 1936 Vergleichende Entwicklungsgeschichte der Tiere. Jens

1. **C.mbHoly. Scv-oha** (formerly called *s-rantla*): Fertilization in this sponge takes place in the mesenchyme. After cleavage and inversion the embryos or amohiblastulae pass into the radial canals. Place a sponge on a slide and slice off very thin transverse sections with a razor blade. Cover the slices with a coverslip and observe. If the sponge possesses amohiblastulae it should be possible to observe their rotation and to obtain a good drawing of them. If only earlier stages are present it may be difficult to observe them in the living condition.

2. **Dissection and recollection.** ... microscope: Take a small piece about 1-2 cm², and squeeze it with your fingers into a sorbveas in a Syracuse dish. Time a sketch of clumping on the bottom of the dish. Observe some of the original suspension with high power and draw the obviously different kinds of cells. Place some microscope slides in the bottom of a 4 inch finer bowl and allow a thick suspension of cells to settle on the surface. Cranate the water after clumping and observe the clumps over a scrub of days (low power). If this is done the first day of the laboratory, you should see ciliated chambers by the fifth day.

3. **Spicule sections.** Draw the major types of spicules you find in your work in sponges.

4. **Hydraulics of sponges.** Each condensation of a good specimen of this leucosclerid sponge has a well-developed osculum and place it horizontally on a ledge in a large finer bowl. **Endoscope** a good specimen of this leucosclerid sponge and place it horizontally on a ledge in a large finer bowl. Insert a fine pipette directly through the side of the sponge into the contralateral cavity. A pressure of a few centimeters of rubber bulb or of the pipette should cause a discontinuous burst of water to be caused on your thumb, and then by determining the distance between color spots and dividing by the time of your beats, it should be possible to determine the velocity at any point in the trajectory.
Introduction to Coelenterates

1. Familiarity of the material

While working with coelenterates in the laboratory it is essential to remember that the hydroids are very sensitive to environmental conditions. They do not survive well in the laboratory even in aquaria of running water. Do not crowd either the adult stems or the eggs and embryos. In general, your procedure will be to look over a good-sized colony of hydroids under the lowest power of magnification, and to clip off a few pieces containing the best embryological material. These can be placed in running sea water, and segregated in plenty of sea water in a dish for more detailed study.

b) Types of Life History Illustrated

There are two phases of embryology in the Hydrazoa. Characteristically, a long series of asexual reproductions (by budding and other methods) is interrupted at irregular intervals by isolated examples of sexual reproducing. This alternation of structure, since zygote production is usually accomplished by medusae and the production of buds by polyps.

In some hydrazoa no medusa-form is known, in others no polyp-form is known, and there are all stages between. The hydrae available at Woods Hole illustrate well the structural variability of the medusa-state. The best-known example of a complete medusa with a degenerate polyp stage is the idealised jelly-fish Gonionemus, but it is unfortunately now nearly extinct at Woods Hole. The genera picked for study are arranged in the order of diminishing completeness of the medusa form, the first having free-swimming medusae and the last mere sproceses. The utter degeneration of the medusa-form is illustrated by the familiar Hydra.

c) Order of Study

Because of seasonal variations and unpredictable fluctuations in the Coelenterate fauna, some of the material described may not be available, and the order of study will have to be announced.

Laboratory Procedure

I. Study of Forms with Perfect Medusa

Examples: Bougainvillia, Obelia, Podocoryne.

Characteristic life history: Zygote shed from medusa; Development to planula larva; Metamorphosis to polyp; Asexual Multiplication of polyps by budding, which produces a colony; Medusae formed by special buds, in a gonophora (Obelia) or separately (Bougainvillia); Shedding of medusae, which mature slowly as separate individuals before forming eggs or sperm.

BOUGAINVILLIA. (June, July, August; not always available in June)

The gonophores are borne singly or in clusters on the main stem and branches, and in this genus develop into complete medusae. The medusa-buds are scattered irregularly through the colony, there being no orderly arrangement according to age. Select buds that show various stages of medusa development and mount them under cover slips, and study their unfolding structure. Draw off water from under the coverslip with absorbent paper to produce a slight pressure on the buds. Sketch three stages in medusa development.

In all of its parts except the gonads are fully formed, the medusa breaks loose and swims away. It lives independently one or two months, the gonads gradually maturing, and a well-developed specimen that is swimming actively and sketch its diagrammatic
structure. Identify manubrium, radial and circular canals, velum, oral tentacles, 4 groups of marginal tentacles.

Illustrations of medusa in Hargitt, C. W. '01, '04; Nutting '01, of medusa development in Goette '07. Also: Hyman '40.

OBELIA (June, July, August)

The **gonosomes** are several times as large as the hydromedusae. Examine specimens and see if they are located at random along the stalks, or in regular places.

An Obelia gonosome has an enlarged transparent covering, the **gonotheca**, with a blasto-style extending thru it from base to tip. The cuter end, or tip, of the blasto-style expands to make a loose plug for the gonotheca when mature.

A cluster of gonophores is borne on the blasto-style inside the gonotheca. The gonophores mature as medusae, and break loose, escaping to the outside past the blasto-style plug. They are commonly caught in tow nets. Their free-swimming life lasts two months or so, the gonads maturing slowly.

The older gonophores should show developing tentacles, when pressed slightly under a cover slip. Which gonophores on a blasto-style are oldest?

With needles, press on the gonotheca of a well-matured gonosome and examine under high magnification the gonophores that are released. Those that are oldest may show swimming movements. Younger stages of development may be teased out from the gonosome and studied. Sketch several stages.

If ripe Obelia colonies are kept for an hour or two in a dish of sea water on the desk (remember not to crowd them), swimming medusae can usually be detected in a good light with the naked eye. Examine some of them when available, and note that their structure is slightly imperfect compared with that of Bougainvillia.

The velum is reduced to a narrow and somewhat lobed membrane near the bases of the tentacles. This makes possible an eversion of the bell when the medusa comes to rest, so that the manubrium sticks out from the center of the convex side, like the handle of a post-hurricane umbrella. Watch the swimming movements, and see how this happens. In the everted condition, the manubrium is still morphologically sub-umbrellar, though this term has lost its appropriateness.

The newly shed medusa of Obelia geniculata has 24 tentacles, while that of Obelia commissuralis has 16. Both forms may be available in the laboratory. Neither has gonads developed at this stage.

Illustrations of Obelia embryology in Hyman '40, Goette '07.

PODOCORYNE (June, July. 1 or 2 colonies will be collected with each 100
Hydactylinia colonies from Sheep-Pen Harbor. None from Pasqua.)

The highly specialized colony grows in an encrusting mat on snail shells, etc., and is almost exactly like Hydactylinia. Both have three types of individuals: feeders, gonosomes, stingers (Cf. descriptions of Hydactylinia below, p. 6.) Podocoryne is included here because of its startling metagenetic contrast to Hydactylinia.

Medusae of Podocoryne are nearly perfect, and may produce several generations of new medusae by asexual building before getting around to their main business of gamete production. Cf. Goette, '16 (The steroid of Hydactylinia bear very little resemblance to medusae, being highly degenerate).
Sketch the three types of polyps and show several stages in medusa development. Gonads can be made out along the radial canals of the swimming medusae, very immature but sexually distinguishable. The asexual colony gives off either male or female medusae, not both.

3. Study of Forms with Imperfect Medusae

Examples: Penmaria, Tubularia.

Life History: Zygodonts shed from short-lived imperfect medusa (Penmaria) or retain in reduced asexual medusae form. (Tubularia): Development to planula larva and metamorphosis to polyp (Penmaria) or development to planula larva and growth to polyp (Tubularia); asexual multiplication of polyps by budding to produce colony; Gonochorists formed by special buds on hydranths; Maturation of gonochorists (imperfect medusae) and fertilization either in situ (Tubularia) or within the limits of the colony during their detachment (Penmaria).

Penmaria (July, August, September: begins to ripen middle of July) Gonochorists bud off singly around the lower portion of the hydranths. They form slightly reduced medusae with rudimentary tuftlike tentacles. Before opening out as transparent bell-shaped forms they suggest acornuts. A single colony bears gonochorists of one sex only, but in the living individuals, sex cannot be discerned only with difficulty until they mature, when the pinkness of eggs and the whiteness of sperm appear. (Smallwood '89) "Male" and "female" colonies are actually sexless, bearing male and female gonochorists respectively.

Mature Penmaria colonies festooned with shedding medusae provide an astonishing, and beautiful spectacle that every student should certainly see. The material ripens in the season of warmest water, and a demonstration of the shedding will be made when possible. It starts early in the evening and continues through midnight. It is usually best seen in material brought into the laboratory the preceding day (i.e. the second night).

The ripe medusae gradually start a rhythmic twitching. Those which are males emit puffs of whitish sperm, and those which are female eject with greater travel the three to six opaque pink eggs. In the south, Penmaria medusae generally break loose from the colony and swim about during this discharge, but at Woods Hole they generally remain attached, and the eggs may not be ejected until long after fertilization. The medusae finally drop off, swim very feebly, if at all, shrivel rapidly and die in a few hours.

Put small selected stems from ripe "male" and "female" colonies together in a fingerbowl after careful rinsing, at 3-4 p. m. and leave them overnight. They are extremely sensitive to overcrowding! Next day, remove the stems and look with naked eye for free medusae as evidence of shedding. If they are found, look for developing eggs.

The eggs are very simple and slightly ameboid, with no apparent membrane. Follow their development as far as possible. If the water is changed several times, the planula stage should be reached in 24 hours, and stages in the very simple metamorphosis to the polyp form may be observed. (Hargitt, G. T. 1900, 1909).

Tense apart male and female gonochorists and examine the eggs and sperm. Sketch several stages in development of the medusa; sketch the mature male and female medusae; sketch several cleavage stages if found.

Illustrations of medusa development in Goette '07; of cleavage in Haritt, G. W., '00. Also Hyman '40.
TUBULARIA (June, July)

The gonophores of a well-matured specimen form long rows or clusters of gonophores originating and drawing from the region between the circles of tentacles on a hydranth. The gonophores quite severely reduced meduses which never become free-swimming. Usually have no evident radial or circular canals and develop nothing but buds for tentacles. Male and female gonophores occur in separate colonies. Diagnosis of sex by sight is impossible in the immature, but gonophores that contain embryos are easy to tell from those that are filled with a cloudy mass of sperm. Early stages of developing embryos are found by teasing with needles, those near the hatching stage are visible in situ.

Examine a ripe male gonophore, considering it as a very degenerate medusa. Notice and sketch its mode of attachment, its shape, the structure of its free end and the position of the sperm surrounding the dark red manubrium. Crush it on a slide and inspect the motile sperm under high power.

Examine and sketch a ripe female gonophore. Usually the tentacles at its distal end appear only as four short blunt knobs, but one or more of them are sometimes slightly elongated. The eggs come from favored oocytes that progressively swallow up their neighbors, lying in the space around the spadix (manubrium).

When ripe the egg is very large and somewhat irregular in shape (Allen '00, Lowe '26) after fertilization, cleavage is often chaotic, apparently either a coeloblastula or a morula may be formed (Lowe '26), and gastrulation of the former has been described (Benoit '25), as a mixture of determination and multipolar proliferation. The embryos are developed up to the "Actinula" stage within the gonophore. The actinula larva is to be considered as a precociously metamorphosing form, part planula and part polyp.

By teasing some female gonophores open with needles, collect and sketch eggs and larvae in various stages. The larvae just taking shape are flattened with blunt marginal processes, at first these are not symmetrical in outline but radial symmetry is attained later. When the larva has reached the actinula stage it has a mouth and aboral tentacles, and a rounded aboral body that later becomes attached at its tip.

Study and sketch the structure of a fully formed actinula larva. Look over some ripe "female" colonies for actinulae beginning to escape from the gonophores. Actinulae will not develop further without feeding.

Tubularia anatomy and development is illustrated in the texts of MacBride '14, Korschelt '36 and Hyman '40. For cleavage cf. Allen '00, Hargitt, G. T. '09. For gonophore development, cf. Goette '07.

C. Study of Forms with Degenerate Medusae.

Examples with blastostyle inside gonophora: Campanularia, Gonothyrea.

Life Histories:

a) Campanularia, Gonothyrea; Zygote develops into planula larvae inside sessile degenerate medusa; Planula escapes, lives free awhile, metamorphoses into a polyp; Asexual multiplication by buds; Colony formation; Degenerate medusae (gonophores) formed on a blastostyle; Gonophores mature in situ; Sperm are shed, eggs fertilized in situ.

b) Hydractinia, Eudendrium; Zygote develops into planula larvae either inside gonosome (Eudendrium) or after being shed from gonosome (Hydractinia); Planulae metamorphoses into polyp; Asexual multiplication by buds; Colony
formation; Gonosomes formed from Hydrothiza (Hydatina) or by transformation of hydranths (Eudendrium): Gonophores (highly reduced medusae or sporoctes) form on gonosomes; Eggs and sperm formed in the sporocysts; Eggs fertilized in situ (Eudendrium) or during shedding (Hydatina).

C. M P A T U L I A R I A (June, July)

It is not safe to try to distinguish this genus from Obelia by the anatomy of the freeswimming individuals. Even the gonosomes are similar in appearance in the two genera, each consisting of a transparant gonotheca with the blastostyle extending from base to tip and gonophores budding from it.

The striking difference is that Obelia produces nearly perfect freeswimming medusae, whereas Campamularia produces gonophores so utterly degenerate that their medusa-like structure can only be made out in sections. Each gonophore on the blastostyle of a "Female" colony contains a very large irregularly shaped egg which is fertilized in situ, cleaves, forms a morula, gastrulates by delamination and reaches the free-swimming planula stage, still in situ. Campamularia, therefore, releases from its gonotheca not medusae but planulae.

Because the gonophores are so inconspicuous and the embryos so obvious, the colonies which produce female gonophores and later contain embryos are loosely spoken of as "female" colonies, although they are asexual.

Select from a "female" colony a gonosome showing eggs in the basal gonophores. Mount it on a slide, study with various magnifications under the microscope, and sketch it.

Select and sketch another gonosome with planulae showing near the tip. Squeeze or open the gonotheca with needles and liberate the planulae. Notice their ciliated ectoderm and watch their movements. If the planulae are well matured, they are two or three times longer than broad. They show maggot-like movements even while within the gonotheca.

Campamularia is very favorable for the study of planula metamorphosis. Put a few mature planulae aside in sea water (not more than 2 or 3 to a watch glass) and cover them. They should attach to the glass in about 4 to 10 hours. Each should then open a mouth, bud out tentacles, secret hydrotheca and perisarc, and become a full formed individual polyp in two or three days. When the planulae have attached, the water should be changed in the dish at least twice a day. Sketch several stages of attachment and metamorphosis.

The gonosomes of "male" colonies are similar in form to the female. The gonophores, when mature, are rounded and have a thin milky-gray color. The sperm become active when they are discharged into contact with sea water, as may be seen by crushing a male gonophore under a cover slide while watching it under the microscope.

For illustrations of Campamularia gonophore development c. f. Goette '07.

G O N O T H Y R E A (July, August)

is in Obelia, the medusae develop within the gonotheca. When mature, instead of swimming away they remain attached to the end of the blastostyle, projecting outside the gonotheca in groups of three or four, like tiny balconies. Within the walls of the medusae the eggs of "female" colonies are fertilized by the shed sperm from "male" colonies. The syngenes develop to the planula stage before being set free, after which the medusae drop off.

Sketch planulae in various stages of development in the projecting attached medusae of a type "female" colony. (Wulfert '02).
Gonothyrea cleavage illustrated in Wulfert '02; Medusa development in Guatte '07. Cf. also texts of Hyman '40 and Korschelt '36.

HYDRACTINIA (June, July, August)

Colonies of this form are fairly common on Littorina snail shells inhabited by the small hermit crab, Pagurus. There are three types of individuals in the full developed colony: ordinary polyps (feeders), threadlike coiling forms with no mouth and an apical knob of nematocysts (stingers, commonly around the lip of the shell) and gonosomes. The three types all arise from a hydrorhiza network covering a rust-red spiny-studded crust.

a) Gonosomes and Gonophores:

The gonosomes or reproductive individuals are usually without tentacles and have a large knob of nematocysts on the proboscis; each bears a number of gonophores, which are medusa-buds reduced to the status of sporosac. Ripe "male" and "female" colonies can be told apart with the naked eye since the eggs within the sporosacs are dull green against the red hydrorhiza, and the sperm when mature are a white mass.

Remove several "male" reproductive individuals showing ripe sporosac, and crush them slightly under a coverslip on a glass sporosac, and crush them slightly under a coverslip on a glass slide. This may be done by drawing off some of the water with blotting paper. The sporosacs fall for short of being perfect medusae. Note stages in the production of sperm within them. Burst a mature sporosac and study the sperm under high power.

Similarly, crush several "female" reproductive individuals, and observe the eggs with their large germinal vesicles, in various stages of development. Sketch the "female" gonosome with its female gonophores and contained eggs.

b) Cleavage and Development

If a number of "male" and "female" colonies of Hydractinia are put together in a large dish of sea water (or a pair of prime colonies in a fingerbowl) and left overnight, eggs should be shed and fertilized between 7 and 9 a.m. WST. The shedding can be controlled by light. If fertilization and cleavage stages are needed later in the day or in the evening, the colonies may be kept illuminated during the preceding night, put in the dark for a couple of hours and reilluminated one hour before the time when shedding is desired. Eggs are shed in 55 minutes, sperm in 50 minutes. Cf. Ballard '42.

Materials for the study of the entire development of Hydractinia from egg to polyp will be made available. If possible, observe the shedding of eggs and sperm. Sketch eggs undergoing first three cleavages, elongated gastrula, swimming and attached planulae, metamorphosing form and young polyps.

Eggs are heavily yolk-y and usually green, but occasionally gray, orange or pink. Maturation takes place during the half hour preceding shedding and polar bodies are lost soon after, a loose jelly being the only covering of the egg.

Cleavage may be irregular or even chaotic, but usually the slightly ameboid egg undergoes three equal total cleavages, each at right angles to the proceeding. The separating pairs of blastomeres tend to retain broad protoplasmic connections with each other on the side opposite to the cleavage furrow, until just before the succeeding cleavages begin. It is soon apparent that there is much variation in the time and degree of shifting of positions of the blastomeres, but the extraordinary and chaotic cleavage patterns commonly seen in the classroom are often the result
of drying up and concentration of sea water, or other unfavorable circumstances.

Mitotic syncytium quickly disappears. Gastrulation is said to start even as early as the 16 cell stage, by mixed delamination and multipolar proliferation. The gastrula loses its spherical form and spends a few hours as an irregularly bumpy ovum; mass, then returns to the spherical form and gradually elongates into the planula form.

At the end of 24 hours the embryo is a "preplanula" (Teissier '27) with an elongated ovoid form, recognizable polarity and ciliation which enables it to swim heavily. During several days it elongates, one end becoming slimmer and slimmer, while it rolls and crawls along the bottom like a planarian. The big end which goes first in this movement is the end which later produces the adhesive disc by which it attaches for metamorphosis. It becomes the aboral end of the polyp.

Following attachment of the attenuated planula, there is a delay of a few hours to several days, and then the tapering free end and shrinks down almost to the substrate, where it shortly produces a mouth and a succession of tentacles. The new polyp elongates, its attached and meanwhile actively sending out a number of anastomosing and encrusting hydroids processes from which sprout new polyps.

Illustrations of cleavage in Bunning '94, Beckwith '14; of later planula development in Teissier '37; of developing gonosome in Goette '07 and '16.

EUDENDRUM (July, August)

The gonosomes of this genus are degenerate sessile medusa-forms or gonophores, strikingly different in the two sexes, borne at the bases of special hydranths which lose their tentacles and degenerate while the gonophores are ripening.

"Female" colonies bear loose irregular tufts of sporosacs attached to the stems, each ripe sporosac being bright orange in color. "Male" colonies bear light pink sporosacs arranged in groups of two to four or more in a line, the lines radiating from a common point on the base of the degenerated hydranth. The ripest male sporosacs occur at the periphery of the cluster and are white with sperm. Sketch both male and female sporosacs.

Eggs are fertilised within the female gonophore or sporosac, and develop to the planula stage before being liberated. (Hargitt, G. W. '04). Tease out embryos from different colonies and study all stages found. The eggs are so rich in yolk that they cleave like insect eggs. The gastrulation is by an extraordinary syncytial delamination. Metamorphosis is simple.

Eudendrum cleavage illustrated in Hargitt '04 (zool. Jahrb.); Gonosome development in Goette '07; Cf. also texts by Korschelt '36 and Hyman '40.

Development of Scyphozoa

SHRELLA OR CYANEA (April, June)

Both these jelly fishes have oral lobes extending downward. In mature specimens granular material will be found entangled on the lobes or contained in small brood cases in the lobes. Tease off some of this material into a drop of sea water on a slide, and examine under the microscope. Embryos of different stages can be found, from spherical cleaving eggs to oval gastrulating forms and fully formed stocky, active planulae. (Hargitt, G. T. '13) Hein '07. Is cleavage regular? Sketch the embryonic stages that are available.
...number of active plasmulae and place them in clean watching glasses of sea water for further study on later days. Their gradual change in form, shrinkage to the bottom, acquisition of tentacles and elongation into the sessile scyphula stage can be followed. The resemblance of the scyphula to a simple polyp is obvious. Attachment of the form of 2 to 4 tentacles occurs on the second day, as does the development of an open mouth. These tentacles increase in number and are drawn out to 4 days, 16 to 2 weeks, 24 to 1 month. Sketch the scyphula in side view and in top view. The scyphula stage lasts throughout the winter. The animals increase in size and undergo sexual reproduction by transverse fission into ephyrites (Strobilization), or by other methods (Porci). These ephyrites are liberated and eventually transform into the adult form of many months.

Life history illustrated in the texts of Rosendahl, 1916, and 1920.
The processes by which organisms replace lost parts have many points of similarity with those that take place in embryonic development. Thus, in the category of most species there is a period of cell multiplication with little or no cellular differentiation (cleavage stages) followed by the period in which cellular differentiation occurs. In regeneration the first of these two periods is represented by the formation of the blastema, and the second, by its differentiation.

Coeleenterates replace lost parts with great facility but the process differs from true regeneration because no increase in cell division has been demonstrated and there is no blastema from which the new hydranth differentiates. Likewise, there are no special reserve cells to become activated by the injury and give rise to the new structures. Instead, the cut surface is healed by the expansion and migration of adjacent cells, and, without any new growth, transformation of cells of the stem into parts of the hydranth takes place. This type of replacement of lost parts is known as reconstitution instead of regeneration.

The study of reconstitutinal development has some inherent advantages over embryonic development, chief of which is that in reconstitution one can study cell differentiation without having cell division as a serious complicating process. Another advantage is that of size. Reconstituting organs are generally considerably larger, and consequently easier to observe and manipulate, than are those in the embryo. Since the analysis of this process has been carried farther in Tubularia than in other forms, we shall study reconstitution in this genus in the laboratory exercises. It must be borne in mind that we are studying the transformation of adult cells; from one type of organisation and differentiation (i.e. coenosarc) to another (i.e. hydranth).

Most studies of reconstitution of a hydroid stem may be grouped roughly into two categories: one which deals with the physiological properties imposed upon the stem by the original organization of the intact stem (gradients, dominance, polarity). The other involves a study of the manner in which changes in the environment may alter these properties, i.e., enhance or inhibit them.

The intact hydroid consists of a hydranth, stem and base. The hydranth is the most active region of the organism. When it is removed it may be seen that a gradient of activity exists along the stem with the high point at the distal end. Such a gradient may be revealed by differential dye reduction (Child, '41) and by the behavior of the stem during reconstitution. In the latter, two of the chief expressions of the gradient are in the polarity relations of the reconstituted stems (the hydranths tend to form at the distal ends of the stems, especially in small species) and in the phenomenon of dominance (the ability of a distal developing hydranth to inhibit hydranth formation in more proximal regions of the stem). Similar dominance relationships are encountered in embryos. While the events resulting in polarity in embryonic fields are much more complex than in hydroid stems once the polarity is established the phenomenon of dominance is also revealed, e.g., the ventral differentiating region of a limb-bud field inhibits adjacent tissue, potentially capable of forming limb structures, from becoming a part of the limb.

One advantage of the hydroid material is the ease with which the processes of reconstitution may be altered. They may be completely inhibited by covering the reconstituting region with sand (Morgan, '03), with a glass tube (Child, '41), by a ligature (Morgan, '38, Peebles, '31) (see Barth, '38), by supersaturated sea water (Miller, '38), by lowered pH (Goldin, '42 a & b) and by an ion released by the hydroids themselves (Rose & Rose, '41, Miller, '42). Polarity and dominance relations may be changed by altering the supply of oxygen.
or removing barriers to free diffusion (Miller, '37, '39, Zwilling, '39, Nakamura, '39).

After a hydranth is removed and the stem of a Tubularian is isolated the first visible indication of reconstitution is the appearance of a pink pigment. As the process progresses longitudinal striations, which represent future tentacles, become evident in the pink region. The next marked change is the appearance of a constriction which separates the newly forming hydranth from the coenosarc. This occurs in 20-30 hours from the initiation of reconstitution. Within the next 10-30 hours the hydranth emerges. The time of appearance of the constriction and the length of the stem from the free end to the constriction have been used as indices of rate of reconstitution. See Barth, '38b, Miller, '42, Child, '41, and Spiegelman and Moog, '44 for a discussion of measurements of rates.

Collection and Care of Tubularia

Theoretically Tubularia is a solitary form but actually so many individuals grow together that a dense tangled mass usually results in the older forms. Young short stems are the best for experimental work and can be obtained from floats and rocks where the current is swift. In general it is best to collect your own stems. Since the stems need running water and a low temperature they do not keep well in the laboratory. In nature the hydranths drop off about the end of July and the stems remain dormant until the water cools down in the Fall. At Woods Hole the stems appear in mid June and can be used until August. However, since the waters of Cape Cod Bay on the north shore are much colder, Tubularia may be obtained from the north end of the canal throughout August. The best method of keeping them in the laboratory is to place each bunch in a 300 ml beaker on steps which allow the water to cascade from one beaker to the next below to insure vigorous circulation.

The stems as collected vary in length, thickness and in general physiological condition (some are crushed, some starved, others old with large gonochoruses). Therefore, we cut the stems off and sort them out in a large finger bowl being careful not to crush them. For most work stems about 10 mm in length are suitable. These are selected for uniform diameter and appearance. The hydranth is cut off a few mm from its base. It is necessary to cut off 3-5 mm of the stem with the hydranth as this part of the stem does not regenerate consistently, especially in older stems.

Even after selection, the stems show some variability in regeneration and so it is best to pool all the stems for one experiment and select at random for the various parts of the experiment. Thus, if you are treating the stems in 4 different ways you should separate the stems into 5 lots at random using one lot as a control. The number in each lot depends on the nature of the experiment. Many experiments are of the all or none nature and 10 stems in each lot are sufficient. In experiments where rate of regeneration is compared under different conditions it is best to use about 25 stems in each lot. This gives satisfactory accuracy in averaging rates.

The stems are kept in running water and cool by placing them in Syracuse watch glasses which are first submerged in large finger bowls through which sea water is running. Care must be taken that the stems are not washed away.

The instruments used for cutting and handling are a sharp scalpel, a pair of sharp scissors, a pair of forceps and a medicine dropper. In using the forceps care must be taken that only the parts which are finally cut off and discarded are handled. Stems are most easily trimmed to size by cutting them on a glass plate
After the stems have been cut to size they are transferred with a pipette and must not be handled with forceps.

When the temperature of running sea water gets above 25°C it is necessary to keep the stems in a refrigerated bath or in stoppered flasks with an atmosphere of oxygen.

Experiments

1. Gradients in Reconstitution

There are quantitative differences along the stem which can be demonstrated in a variety of ways, but perhaps the most significant is the difference in rate and size of the products of reconstitution at different levels of the stem. You may demonstrate this gradient by cutting long stems into thirds and recording the time of appearance of the constriction separating the future hydranth from the neck region (Earth '38). Since this constriction appears from 24 hours after cutting and the still unconstricted stems should be examined every two hours until it appears, it is well to begin this experiment as early in the day as practical.

Select 25mm stems for homogeneity with regard to diameter and appearance and after removal of the hydranth cut each into three pieces of equal length (6mm) and discard what is left. Place them in separate finger bowls marked Distal, Middle and Proximal and keep on a water table until they have been recorded. (If you have a ocular micrometer the length of the hydranth can be accurately measured also). After they all have reconstituted average times (and lengths) should be calculated. What factors can you suggest which migh play a role in the differential which your experiments reveal?

2. Dominance

Four lots of 10 stems each will be used.
Lot 1 long stems (12 mm long after cutting)
Lot 2 short stems (6 mm long after cutting)
Lot 3 short stems (6mm) ligatured in the middle
Lot 4 very short stems (2 to 3 mm long after cutting)

In preparing these lots be very careful to remove 3mm or more of the stem with the hydranth. Cut the stems in such a way that the two ends of the stem can be distinguished. This may be accomplished very simply by making the distal cut at an oblique angle and the proximal cut at a right angle to the stem.

With regard to the proximal hydranth this is an all or none type of experiment. If taken from healthy colonies the developing distal hydranth either will completely prevent hydranth reconstitution at the proximal end of the piece or will have little effect upon it.

Place the stems in Syracuse dishes in a large finger bowl through which a current of sea water is flowing gently, or in finger bowls kept on the sea water table. At 48 hours the reconstituted hydranths should have emerged from the perisare. Record the number of distal and proximal hydranths in each lot.
1. Effects of Oxygen upon Reconstitution

Cut 20 or more 6 or 8 mm pieces. Place half of them in a 200cc Erlenmeyer flask filled to the top with oxygenated sea water and stopper tightly so that no air is trapped in the flask. Place the other half of the stems in a similar flask filled with sea water through which nitrogen has been bubbled. After 36 to 48 hours count the number of hydranths reconstituted in each flask. If you wish to continue the experiment, the stems from the nitrogenated flask may now be transferred to the oxygenated flask and their ability to reconstitute can still be elicited (Cf. Barth '38).

2. Effects of Oxygen Upon Scale of Organization and Upon Bipolarity (Cf. Miller '49)

Cut 60 or more very short pieces (1-1.5mm long), select 50 which are most nearly the same size and divide into two lots of 25 each.

Lot 1. Place the pieces of this lot in the flask of oxygenated sea water you prepared for experiment 3. (Since they are very small there is no danger of confusing these pieces with the 6 or 8 mm pieces you already placed in it).

Lot 2. Place these pieces in a covered fingerbowl or Erlenmeyer flask on the water table.

Count the number of complete hydranths reconstituted and also the numbers of various partial hydranths beginning about 48 hours after the experiment was started. Since the partial hydranths are unable to emerge from the perisarc, it will be necessary in most cases to squirt them out by drawing them up into an eye dropper and squeezing the bulb rapidly.

Note that Oxygen increases:
(1) the percentage of pieces that reconstitute.
(2) the number of partial hydranths (a result of its effect upon the size of the primorini when there is not enough tissue in the piece to form a larger hydrant)
(3) the percentage of bipolar types. Can you suggest an explanation for the increased frequency of bipolar types in short pieces as a result of oxygenation, when it decreases bipolarity in longer stems?

Cut 20 10mm long stems in such a way that the two ends of the stems can be distinguished.

Insert the distal ends of 10 of these into some washed sand in a finger bowl filled with sea water and insert the proximal ends of the other 10 into the sand. After 36 to 48 hours remove and count the hydranths which have developed at distal and proximal ends (Cf. Morgan '03).

4. Effect of Acidity Upon Reconstitution

Prepare acidified sea water by first adjusting about 100 cc to pH 3-4 with concentrated HCl. Bubble air through this water vigorously for 3-6 hours. Adjust again to pH 5.9 with Mallvaine's buffer (citric acid, 1M- secondary sodium phosphate .2M). Place 10 stems (10mm) into a flask or finger bowl in the adjusted sea water. Place a similar group of stems in untreated water. Keep these on the
sea water table. When all of the control stems have become constricted note the number which have reached the same stage in the acidified sea water. Check to pH of the water in each vessel at the end of the experiment (Goldin, '42 a,b).

7. Inhibitors Released By The Stems.

Take a small colony of Tubularia (200-250 long stems) and cut it up into small pieces (8-10 mm). Allow these to heal for 1-2 hours, then wash them carefully and place them in a flask with 250 cc of filtered sea water. Let them stand for 12 hours with air bubbling through the water. After this interval place two groups of 10 freshly prepared 10 mm stems in some of this water in separate containers. Place 10 similar stems in an equal quantity of untreated sea water. Bubble air through one of the two vessels which have "colony" water for the duration of the experiment. Keep all vessels on the sea water table until most of the control stems have reached the constriction stage. Note the number constricted in each. Check the pH of the water in each vessel at the termination of the vessel. Inhibited stems may be further tested by placing them in fresh sea water at the end of the experiment. If they reconstitute they have been inhibited and not killed. (See Rose and Rose, '41).

8. Independence of time for reconstitution and length of hydranth.

Prepare 2 groups of 10 stems each (10 mm). Place them in separate vessels. Keep one of the vessels on the sea water (note temperature) table (one of the control groups in exp. 6 or 7 may be used for this experiment). Place the other in a refrigerator at approximately 7°C. Note the time for appearance of the constriction and the length of the hydranth primordium in each case. Plot the results by converting 1/t (rate) and length of the refrigerated stems to percent of the controls. Temperature is the abscissa. (Spiegelman and Mag, '44).

If time permits perform the following experiments in addition to the above.

9. Demonstration of the liberation of inhibitors of reconstitution by the cut ends of stems.

Fill 10 pieces of 1 mm glass tubing 15 mm long with oxygen. (This can be done very readily under water). Affix one end of each to a small amount of neutral plasticine attached to the bottom of the finger bowl and insert into 5 the distal end (cut obliquely) of a 10 mm piece of stem. Into the other five insert the proximal ends (cut transversely) of similar pieces. After 36 hours record the hydranths reconstituted at the exposed end's and those at the ends inserted in the O2 filled tubes (Cf. Rose and Rose '41, Miller '42).

10. To Demonstrate Effects of Acidity upon Reconstitution

Tubularia has been found to be very sensitive to acidity. (Goldin '42a, '42b). An external pH of 6 will completely prevent reconstitution. Observe stems which have been injected with phenol red 30 hours earlier and placed in glass tubes which interfere with the release of those pH lowering substances. Compare these with stems which have been injected but have not been placed in long tubes. Draw and color one stem from each lot. After the hydranths have emerged they may be drawn and colored again (Cf. Miller '49).
RECONSTITUTION FROM NON-DISSOCIATED CELLS

1931. Experimental modification of the scale of organisation in the reconstitution of Tubularia. Physiol. Zool. 4: 165-188.

1946. Differential reduction of Janus Green in the early development of Tubularia crocea. Anat. Rec. 94:

Development of Non-Felagic (Demersal) Eggs
Type - Fundulus sp.

Breeding Season: Material is best and most abundant during the first three weeks of June but small numbers of fertilizable eggs can be procured through July 15.

Equipment:
Living Material - Fundulus heteroclitus and/or Fundulus majalis

Classware, etc. -
General Class Equipment - 3 large aquaria
Individual Equipment - 3 clean finger-bowls (4 by 2")
3 glass plates to cover finger-bowls
2 syracuse dishes
3 ordinary pipettes and bulbs
1 fine-tipped pipette and bulb paper toweling or filter paper lining paper
2 syracuse dishes
hair loop
culture slide - 1.7-1.8 mm. depression plain glass slides thin sheet of mica cover slips

Solutions - stock 0.5% Neutral Red solution
Dilute sea H2O (70% sea H2O, 30% fresh water)

Additional Reagents needed if eggs are to be fixed for sectioning or total preparations:
1 - Total preparations:
Stockard's solution: formalin - 5 parts
glacial acetic - 4 parts
glycerine - 6 parts
distilled water - 85 parts

2 - For Sectioning:
Bouin's or Zenker's Fluids
Graded series of Alcohols
amyl- acetate
56-58 degree paraffin

Technique of Preparing and Handling Material:
A. Care of Adults
Although fish are usually brought to the laboratory in mixed lots of males and females it is advisable to segregate the sexes to prevent spawning. Males and females should be placed in separate tanks until needed and after stripping removed to a discard tank. The sexes of both species of Fundulus are easily identified. The mature female F. heteroclitus is pale olive in color and usually possesses no distinct bars or spots, although the young females have indistinct, dark, transverse bars on the sides. The dorsal fin is non-pigmented. The adult male of this species is a dull, dark-green, the sides bearing narrow, ill-defined transverse bars
composed of silvery spots. The dorsal fin possesses black pigment arranged in a mottled pattern. The body markings of F. majalis are more conspicuous. The pale olive female has a pattern of heavy black longitudinal stripes on the sides and a non-pigmented dorsal fin. The sides of the slightly darker male bear a dozen broad, dark, transverse bars. The black patch on the dorsal fin is striking.

B. Procuring Gametes

Both eggs and sperm are procured by stripping. The fish is held firmly with the left hand while gentle pressure is applied to the abdomen using the thumb and forefinger of the right hand. As these fingers are drawn towards the anus the pressure forces out the gametes. If the fish is held against the light while stripping the eggs may be seen passing through the oviduct which runs along the anal fin.

C. Preparation of Cultures

Strip eggs into a clean finger bowl which has been moistened with sea water. Strip milt into a small amount of sea water, mix with eggs, and allow to stand in \(\frac{1}{3} \) of salt water. Neither eggs nor sperm should be allowed to stand before fertilizing. After 30-45 minutes change the sea water and leave the eggs in \(\frac{1}{3} \). Keep bowl covered with a glass plate. Do not allow eggs to clump or accumulate in one spot. Label each lot with the exact time of fertilization. Change the water at least twice a day.

D. Methods of Studying Eggs

The eggs should first be studied in the condition in which they are spawned, but for many purposes it is desirable to prepare them for microscopic study as follows: Roll the eggs on a piece of filter paper or paper towel until the jelly and the outer fibres are removed leaving the surface of the outer membrane smooth and clean. The same procedure should be followed for day-old stock cultures in order to prevent clumping of the eggs.

For experimental work where absolutely normal development is essential, eggs are usually examined uncovered in shallow depression slides and manipulated with hair loops. For laboratory study where eggs are to be observed over long periods of time and specific orientation is desired, either of the following methods is suggested: Place the eggs in sea water in culture slides having a 1.7-1.8 mm. depression (slightly less than the diameter of the egg) or the egg may now be rotated by moving the cover slip. If these special slides are not available eggs may be placed in a drop of sea water on an ordinary glass slide and covered with a very thin, flexible sheet of mica. Water is then withdrawn with lens paper until capillary attraction causes a pressure on the egg. The cover slip may then be rotated as in the previous method.

E. Permanent Total Preparations

Fix the eggs in Stockard’s solution. This turns the protoplasm white but leaves the yolk transparent. The fixative may be used as a preservative or the material may be transferred to 10% formalin after 2 days.

F. Preparation of Eggs for Sectioning

Eggs must be dehydrated before fixation to allow fluids to penetrate the interior. (For details of this process see Nichols, '27). The following method of embedding is that of
Barron '34, with some modifications of timing suggested by J. Oppenheimer.
1. Fix in Bouin's or Zenker's solution 12-24 hours.
2. Run up in ordinary manner through the alcohols leaving eggs in each through 95% for one hour.
3. Place in absolute for 2 hours-running through several changes.
4. Place in equal parts absolute and amylo-acetate for 2 hours.
5. Place in amylo-acetate for 24-48 hours.
6. Place in equal parts of amylo-acetate and paraffin and incubate at 50 degrees for about 12 hours.
7. Transfer through three changes of paraffin (15 minutes in each) and embed in 56-58 degree paraffin.

Observations of Normal Development

1. The Unfertilized Egg: Strip the eggs from a female into diluted sea water (70% fresh water, 30% sea water). Keep them in this solution to retain the morphological characteristics observable at time of extrusion. Note the details of structures of the unfertilized ripe ovum. These include platelets, oil drops, protoplasm, membranes, micropyle, etc. (The micropyle must be observed before removal of chorionic jelly). If young ova are present compare with ripe ova.

2. The Sperm: Sperm may be stripped into sea water and a drop of the suspension examined under a cover slip under high power. Note the general structure and the enormous size difference between eggs and sperm.

3. Fertilization: Prepare a culture of fertilized eggs according to the method outlined in part C of the section on technique. Be sure to record exact time of insemination. Be prepared to transfer eggs immediately to a slide for observation. Record time of fading of platelets, of the formation of the perivitelline space. What are your conclusions in regard to the rapidity of activation of the egg? If practicable, place a number of newly-extruded unfertilized eggs in a depression slide and partially cover the depression with a cover slip leaving uncovered a space large enough to permit the introduction of a fine pipette. Rotate eggs until the micropyle of one comes into view. Introduce a drop of sperm suspension into the depression without disturbing the cover slip and watch the entrance of the sperm and the spread of the fertilization reaction from the locus of the micropyle. Since polar bodies have not been seen in Fundulus it has not been determined at what stage of maturation the sperm enters the egg.

4. Formation of the Blastodisc: Note the gradual accumulation of the protoplasmic cap. This is the blastodisc or germ disc. Compare polar and lateral views. What is the relation of the pole of the egg to gravity? How does this compare with the condition in the frog egg; with the chick egg? Do any processes take place in the unfertilized egg similar to those in the fertilized egg?

5. Cleavage: Watch for the appearance of a groove on the surface of the blastodisc-the indication of the first cleavage
plane. This usually occurs within 2-3 hours after fertilization.
Note the geometric relation, and time sequence of the subsequent
cleavages. Do the cleavage planes divide the entire ovum? The
entire blastodisc? During interkinesis the nuclei are sometimes
visible. Distinguish between central and marginal cells.
Follow cleavage carefully to the 32 cell stage. Note irregular-
ities. When do horizontal cleavage planes first occur? Does
the blastodisc increase in size or alter in form? Note that
cleavages continue for a considerable period without much change
in form, from that of the original blastodisc. This is called
the period of the high blastula. When does the change of form
to the flat blastula occur? (See Oppenheimer '37 for chrono-
logical terms).

5.- Time Table of Development: The rate of development varies with
temperature and other external environmental conditions. The
approximate developmental stages which may be expected under
various conditions of temperature and salinity may be seen in
chart 1. The stages are numbered according to the chronology
established by Oppenheimer '37.

7.- The i oriblast: (Appears 16-24 hours after fertilization) The
uncleared protoplasm around the margin of the group of blasto-
moreas is called the marginal periblast; that beneath the
blastodisc (only visible in sections) the central periblast.
In the late blastodisc (18-20 hours) observe particularly the
behavior of the marginal cells and distinguish between circular
and radial cleavages. The large pinkish nuclei of the periblast
are easily visible. Note how the nuclei of the marginal row of
cells become free of cell outlines, continue their divisions
and migrate into the marginal periblast, converting it into a
nucleated but non-cellular structure. Follow the periblast
structure in later stages.

8.- The Germ Ring and the Extension of the Blastodisc (18-48 hours)
Subsequent to the nucleation of the periblast note the change
in form and size of the blastoderm. The embryo is now referred
to as a blastula. Seen the margin of the disc appears relative-
ly thicker. This thickening is termed the germ-ring and is
due both to an actual peripheral increase in cells and to a
thinning of the central part of the disc. This germ ring can
best be observed in F. majlis. During the next few hours the
germ ring grows completely over the surface of the yolk mass.
The uncovered portion of the yolk is the blastopore. The
final covering of the yolk or the closing of the blastopore
ocurs after the first stages of the formation of the embryonic
axis. Under favorable conditions the beginning of gastrulation
may be observed in the appearance of a slight indentation at the
edge of the germ ring at the time when the yolk is about ½
covered. Staining with neutral red will aid in identification of
the germ ring and periblast. (Add 1 or 2 drops of stock
solution to a Syracuse dish of sea water).

9.- The Formation of the Embryo (Begins in 24-36 hours)
While the germ ring is extending around the yolk the embryonic
axis is being established. Its first indication is a cellular
thickening known as the embryonic shield caused by a more active movement of cells in one part of the germ ring. This formation is initiated when the blastoderm has covered from one-quarter to one-third of the surface of the yolk. By the time that the blastoderm has covered about one-half of the yolk the embryonic shield has become a bluntly triangular area extending from the margin of one portion of the blastoderm to near the center of the blastoderm. The shield can best be identified in profile view. As the blastoderm spreads over the surface of the yolk the embryo grows rapidly in length.

Observe the whole egg in profile view, so that the embryo is seen in sagittal optical section, when the yolk is 1/3, 1/2, 2/3, and 3/4 covered. What proportion does the length of the embryo bear to the diameter of the blastoderm and to the length of the germ ring in each of these successive stages?

After the yolk is 7/8 covered, look for a large clear vesicle near the hind end of the embryo. (Do not confuse this with a cluster of small oil drops frequently found in a similar position). This is Kupffer's vesicle.

During this period the embryo becomes segmented. This segmentation is confined to the mesoderm which lies on each side of the axis of the embryo forming mesoblastic somites. How many somites are present at the time of the closure of the blastopore?

Look for the notochord. Study it in longitudinal and transverse optical sections. Where does it terminate anteriorly and posteriorly?

10. Later Development Obtain series of embryos of 2, 3, 4, 5, 6 days and make a detailed comparative study. It is suggested that drawings be made at 24 hr. intervals and that a chart be made showing the first appearance and later development of the organ systems. The following method of chart construction may be used:

<table>
<thead>
<tr>
<th>Days after fertilization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Somite Number</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Nervous System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain Divisions</td>
</tr>
<tr>
<td>Eye</td>
</tr>
<tr>
<td>Otocyst</td>
</tr>
<tr>
<td>Olfactory Pit</td>
</tr>
<tr>
<td>Circulatory System</td>
</tr>
<tr>
<td>:</td>
</tr>
<tr>
<td>:</td>
</tr>
<tr>
<td>etc</td>
</tr>
</tbody>
</table>

If you are unfamiliar with the form of chronological charts good examples may be found in the following texts:

Lillie, F. R. 1940 The development of the chick. New York: Hcilt. (opposite page 68)

It is suggested that embryos be removed from their chorions in the later stages, for better observation of structural details. Although this is difficult to perform in early stages and requires special instruments (See experimental section, page...) in later stages the loose chorion may be torn off with sharpened forceps, or with the beading needles. Be careful to avoid injury to the yolk sac.

The following developmental features should be observed and incorporated into drawings and chart:

a. **Somites.** Note first appearance and determine numbers formed on successive days.

b. **Nervous system.** Find in early stages the optic vesicles, lens neurosur, mid-, fore-, and hind-brain regions and trace the development into cerebrum, optic lobes, cerebellum, m-dulla, etc. Study the development of the eye, olfactory pit and otocyst. How is the lens of the eye formed?

c. **Circulatory system.** Note the extra-embryonic body cavity; formation of the pericardium; first blood vessels (and especially their mode of formation from wandering mesenchymal cells); the first action of the heart; form and position of the heart. Compare the course of circulation on the 4th and 6th days. Consult chart No. 2 for an outline of the development of the circulatory system.

d. **Mesenchymal cells.** Note wandering mesenchymal cells, especially abundant beneath the posterior part of the embryo on the 2nd, and 3rd days. Can you distinguish various types? By successive observations at brief intervals, the change in form, migration, and division of these cells may be noted.

e. **Note first appearance of fins; of the urinary vesicle or bladder (a bi-lobed outgrowth of the hind-gut); the liver posterior to the left fin bud.**

11. **After Hatching.** The young fish may be studied just after hatching by anaesthetizing with chloroform. Consult paper by Oppenhein '37 for further details of developmental stages.
Bibliography

DEVELOPMENT OF THE TELEOST

This bibliography contains only a few of the older papers. (For more complete references see general works and bibliographies in papers more listed)

1. General Reference Works

Brachet, A. 1935 Traite d'embryologie des vertebres. 2nd ed.
Oppenheimer, J. M. 1936 Historical introduction to the study of teleostean development. Osiris, 2, 1936.

11. Special References on Descriptive Embryology

Wilson, H. V. 1891 The embryology of the Sea bass (Sorramus atrarius) Bull. U. S. Fish Com., 9.

111. Stage Series

Solberg, A. N. 1938 The development of a bony fish (Fundulus) Progr. Fish. Culturist, and Doct. of Comm., Bureau of Fish. Washington, D. C.

IV. Reproductive Cycle and Breeding Habits

V. Circulatory System

Armstrong, P. B. 1931 Functional reactions in the embryonic heart accompanying the ingrowth and development of the vagus innervation. J. E. Z., 58.

VI Germ-Cells

Okkelborg, Peter 1921 The early history of the germ cells in the brook lamprey, Entosphenus wilderi (Gago) up to and including the period of sex differentiation. Jour. Morph., vol 35 (This paper has a complete bibliograph of work on germ cells in other groups)
Richards, A. and J. I. Thompson, 1921 Migration of primary sex cells of Fundulus
Biol. Bull. vol. 40

VII Experimental work

Fakin, A. I. 1939 Regional determination in the development of the trout. Arch. Ent.-Mach. 139
Kagen, B. L. 1935 The fertilizable period of the eggs of Fundulus heteroclitus and some associated phenomena, Biol. Bull. vol. 69.
Luther, W. 1936 Potensprüfung an isolierten Teilstücken der Forellenkeimscheibe. Zool. Anz., Suppl. 9
Nicholas, J. S. 1927 The application of experimental methods to the study of developing Fundulus embryos. Prof. Nat. Acad. Sci 43: 695-698
Nicholas, J. S. 1942 Regulation and reconstitution in Fundulus J. E. Z., vol. 90, 127
Oppenheimer, J. M. 1936a The development of isolated blastoderms of Fundulus heteroclitus. J. E. Z., vol. 72
1936b Transplantation of experiments on developing teleosts (Fundulus and Perca) J. E. Z., vol. 72.
1936c Processes of localization in developing Fundulus J. E. Z. vol. 73.
1938 Potencies for differentiation in the Teleostean germ ring J. E. Z., vol. 79
1939 The capacity for differentiation of fish embryonic tissues implanted into amphibian embryos J. E. Z. vol. 80

VIII Hybridization

Morris, Margaret 1914 The behavior of chromatin in hybrids between Fundulus and Ctonolabrus. J. Exp. Zool., vol. 16
Newman, H. H. 1918 Hybrids between Fundulus and mackerel. J. Exp. Zool., vol 26 (See this for reference to other paper by same author)
IX Technique

Technique of Handling PolAGIC EGGs

Type - Tautogolabrus adspersus, the
cumbuck or Chogset

Whenever possible, observations should be made on polagic eggs as well as on the demersal eggs of Fundulus. Many structures such as the germ-ring, embryonic shield, and Kupffer's vesicle will be easier to see in the former because they have fewer oil globules and a less-granular protoplasm. The formation of polar bodies may also be seen in this type of egg. Polagic eggs are far more sensitive, however, in their oxygen requirements, so require careful handling.

Polagic eggs may be obtained from the scup (Stenotomus chrysops, Linn.) and the mackerel (Scomber acombrus, Linn.), but must be stripped and fertilized as the fish are taken fresh from the live car. The cunner will prove far more useful, particularly for the study of early stages, for it may be brought to the Laboratory aquaria and stripped as needed.

Cunners should be caught the same day as needed; females are ordinarily caught only after 12 M. The male has a somewhat brighter green color and can also be distinguished by its bright red cloacal lining epithelium. Milt is stripped into a large finger bowl which contains sufficient sea water to cover the bottom. Eggs are stripped into a separate bowl containing a small amount of sea water. It will prove helpful to use a cloth towel for holding the fish while they are being stripped, because they are extremely slimy and have sharp spines in the dorsal fin.

As soon as possible after stripping, the sperm-suspension should be poured into the egg dish and the time recorded. Let the mixture stand for half a minute; then dilute with sea water and decant into smaller finger bowls, or pour into a cylinder or Erlenmeyer flask and add sufficient sea water to fill. Good eggs will float to the top and collect principally at the edge of the meniscus. They should be pipetted off and placed in covered finger-bowls containing $\frac{1}{2}$" of clean sea water, and set in the sea water table where they will keep cool.

Only glass-clear eggs are suitable for study; if the eggs show the slightest opacity they are either immature or dead. If bits of tissue are clinging to the egg, it is immature and should be discarded. The prvietelline space appears immediately after fertilization; time should not be wasted in observing eggs which do not develop such a space within a few minutes. For observing the formation of polar bodies, the blastodisc, and early cleavage, it is advantageous to place the microscope in a horizontal position so that the blastodisc may be observed in profile. It is difficult to see the polar bodies by any other method. They appear 5 to 10 minutes after fertilization as small clear beads on the surface of the blastodisc. Cleavage is rapid, occurring approximately once every 20 minutes at a temperature of 16-18°C. The cleaving eggs are crystal-clear, there are no obscuring oil droplets, and the nuclei appear as pinkish objects for a short time between divisions. If neutral red is used for outlining the cleavage spindles, it should be extremely dilute. Too much stain will stop cleavage or make the pattern irregular.

Cunner embryos may be kept alive for several days if care is
taken not to crowd them and the water is changed frequently. It is
suggested that not more than 3 to 6 eggs be placed in each finger-
bowl, that they be transferred to clean sea water morning and night,
and that the bowls be covered and kept in the sea water table.
Opaque (dead) eggs should always be removed. The embryos usually
 hatch within 4 or 5 days after fertilization.
Stage of Development

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Seawater</th>
<th>1/2 sea</th>
<th>1/2 distil.</th>
<th>Tap water</th>
<th>Dist. water</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20°C</td>
<td>7</td>
<td></td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>3</td>
<td>5</td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>2</td>
<td>4</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A table to show the number of days (24 hrs) required by Fundulus heteroclitus embryos to reach different stages of development from the blastula to the formation of the swim bladder just before hatching under varying conditions of temperature, salinity, etc.

Daniel Herriman, Osborn Zoological Laboratory andingham Oceanographic Laboratory, Yale University.

Dosxyribonucleic acid. Dosxyribonucleic acid. Dosxyribonucleic acid. Dosxyribonucleic acid. Dosxyribonucleic acid.

Mixtures of the class of mixtures of the class.

Section. Section. Section. Section. Section.

k':lnopacka, B., Nicholl, S., and Oppenheimer, 1942; 2. Oppenheimer, 1941; 3. photometric and activation studies in the presence of glucose and other substrates; 4. Action of chemicals on activation processes; 5. Membrane effects.

Experiments on Early Stages in Marine Embryos:

- a) Temperature effects, 1920; b) Cytological changes, 1921; c) Effects of acetic acid on activation; d) Effects of organic and inorganic substances, 1935; e) Effects of bacterial hormones, 1939; f) Effects of quinones, 1941; g) Oxidation-reduction effects; h) Effects of various agents on activation.

Results of Chemical and Mechanical Treatments:

- a) Temperature effects; b) Cytological changes; c) Effects of acetic acid; d) Effects of organic and inorganic substances; e) Effects of bacterial hormones; f) Effects of quinones; g) Oxidation-reduction effects; h) Effects of various agents on activation.

Experiments on Later Stages:

- a) Effects of mechanical and chemical treatments; b) Effects of temperature and oxygen tension; c) Effects of various agents on activation; d) Effects of bacterial hormones; e) Oxidation-reduction effects; f) Effects of quinones; g) Temperature effects; h) Cytological changes; i) Effects of acetic acid; j) Effects of organic and inorganic substances; k) Effects of bacterial hormones; l) Oxidation-reduction effects; m) Effects of various agents on activation; n) Temperature effects; o) Cytological changes; p) Effects of acetic acid; q) Effects of organic and inorganic substances; r) Effects of bacterial hormones; s) Oxidation-reduction effects; t) Effects of various agents on activation; u) Temperature effects; v) Cytological changes; w) Effects of acetic acid; x) Effects of organic and inorganic substances; y) Effects of bacterial hormones; z) Oxidation-reduction effects; aa) Effects of various agents on activation; bb) Temperature effects; cc) Cytological changes; dd) Effects of acetic acid; ee) Effects of organic and inorganic substances; ff) Effects of bacterial hormones; gg) Oxidation-reduction effects; hh) Effects of various agents on activation; ii) Temperature effects; jj) Cytological changes; kk) Effects of acetic acid; ll) Effects of organic and inorganic substances; mm) Effects of bacterial hormones; nn) Oxidation-reduction effects; oo) Effects of various agents on activation; pp) Temperature effects; qq) Cytological changes; rr) Effects of acetic acid; ss) Effects of organic and inorganic substances; tt) Effects of bacterial hormones; uu) Oxidation-reduction effects; vv) Effects of various agents on activation; ww) Temperature effects; xx) Cytological changes; yy) Effects of acetic acid; zz) Effects of organic and inorganic substances; aa') Effects of bacterial hormones; bb') Oxidation-reduction effects; cc') Effects of various agents on activation; dd') Temperature effects; ee') Cytological changes; ff') Effects of acetic acid; gg') Effects of organic and inorganic substances; hh') Effects of bacterial hormones; ii') Oxidation-reduction effects; jj') Effects of various agents on activation; kk') Temperature effects; ll') Cytological changes; mm') Effects of acetic acid; nn') Effects of organic and inorganic substances; oo') Effects of bacterial hormones; pp') Oxidation-reduction effects; qq') Effects of various agents on activation; rr') Temperature effects; ss') Cytological changes; tt') Effects of acetic acid; uu') Effects of organic and inorganic substances; vv') Effects of bacterial hormones; ww') Oxidation-reduction effects; xx') Effects of various agents on activation; yy') Temperature effects; zz') Cytological changes; aa'') Effects of acetic acid; bb'') Effects of organic and inorganic substances; cc'') Effects of bacterial hormones; dd'') Oxidation-reduction effects; ee'') Effects of various agents on activation; ff'') Temperature effects; gg'') Cytological changes; hh'') Effects of acetic acid; ii'') Effects of organic and inorganic substances; jj'') Effects of bacterial hormones; kk'') Oxidation-reduction effects; ll'') Effects of various agents on activation; mm'') Temperature effects; nn'') Cytological changes; oo'') Effects of acetic acid; pp'') Effects of organic and inorganic substances; qq'') Effects of bacterial hormones; rr'') Oxidation-reduction effects; ss'') Effects of various agents on activation; tt'') Temperature effects; uu'') Cytological changes; vv'') Effects of acetic acid; ww'') Effects of organic and inorganic substances; xx'') Effects of bacterial hormones; yy'') Oxidation-reduction effects; zz'') Effects of various agents on activation.
EMBRYOLOGY OF MOLLUSCA

Gastropoda

1. The Veliger Larva

Study the typical Veliger larva of Crepidula fornicata. Obtain material by breaking the animal from the substrate to which it is attached. You will find the yellowish eggs (enclosed in transparent capsules) attached to the substrate or in the shell of the mother. Tease the embryos out of the capsules. Obtain swimming larvae in different stages, particularly old ones with the yolk resorbed. They are transparent and show the inner organs. Consult Conklin (1897) figs. 80-82 and the text books of Parker & Haswell volume 1 (1928) fig. 657 on p. 734, or MacBride figs. 263 ff. on pages 301 ff. or Korschelt volume 2 (1936) pp. 861-891. Study dorsal, ventral and lateral views. Mouth and foot are on the ventral side; the anus is on the right side.

Note: 1. Ciliated velum

2. Head vesicle (dorsal)

3. Eyes with lens (dorsal)

4. Foot (ventral); study it in lateral view

5. Statocysts (ventral) at the sides of the foot

6. Ciliated mouth (ventral) above foot

7. Oesophagus (dorsal), stomach and liver. The different parts of the intestine can be distinguished only in older embryos which have resorbed the yolk.

8. Anus (on right side)

9. External kidneys (lateral to foot)

10. Heart (dorsal). Observe the heart beat in older embryos.

11. Transparent shell.

2. EARLY STAGES OF THE VELIGER

There is no typical trophophore stage in Crepidula. Study stages of direct transformation of the gastrula into the Veliger larva (Conklin, 1897, figs. 77-79). Observe the gradual development of the shell gland, shell, velum and foot.
CREPIDULA -- DERIVATIVES

1st quartette of micromeres:

a. all ectoderm cells of head vesicle
b. apical plate of ciliated cells
c. posterior cell plate
d. dorsal portion of functional vellum and portion of first
 vellum row on ventral side
e. supraoesophageal ganglia and connectives
f. cerebro-pedal connectives
g. possibly the pedal ganglia
h. an apical sense organ
i. paired eyes.

2nd quartette of micromeres:

a. larger part of vellum
b. shell gland
c. at least part of the foot
d. larval mesenchyme from derivatives of 2a - 2c.

3rd quartette of micromeres:

derivatives lie wholly outside of vellum area and form a
considerable part of the lower hemisphere.
REFERENCES - GONIOMORPHA

GASTROPODA

Crampton, H. E. 1896 Experimental Studies on Gastropod Development. Arch. of Entw. Lood., 2:1-19

Lamellibranch (Palecypod) Development

Type: *Lactra solidissima*

1. Normal Development:

A. The Unfertilized Egg: Obtain a sample of unfertilized eggs in a shallow dish and transfer a few to a depression slide for study. When shed, the eggs are irregular in shape due to the pressure within the ovary, but they become spherical on standing. They are usually (53 micra in diameter) and the center is almost completely filled by the prominent germinal vesicle with its prominent nucleolus. Note the thin layer of clear cortical cytoplasm and the densely packed yolk. Unless the eggs are inseminated, they will retain this appearance for many hours. The eggs are fertilizable until the germinal vesicle breaks down, although the capacity for normal fertilization and development is impaired with long standing.

B. Fortification and Saturation: Fortify eggs and immediately transfer a sample to a depression slide. A few minutes after insemination the outline of the germinal vesicle starts to become indistinct, and in 15-20 minutes there is only a lighter area in the center of the egg, marking its former position. A thin *fertilization membrane* is raised, but this is not lifted far from the egg surface, and it is best seen in the region of the polar bodies or spanning the cleavage furrows. The first polar body forms shortly after germinal vesicle breakdown, and the second polar body follows directly beneath the first. Both polar bodies are usually formed by 30-35 minutes after insemination. Note the position of the polar bodies, for they mark the plane of the coming cleavage.

C. Early Cleavage: About 50 minutes after insemination, two nuclei will be visible: the male and female pronuclei. Can you see them approach and fuse? Cleavage occurs about 15 minutes after they first appear. The first cleavage is unequal, and the first two blastomeres differ greatly in size. The second cleavage follows in about half an hour. In the case of the larger cell, cleavage is again unequal, resulting in one large cell and three smaller cells. Compare the four cell stage of *Crepidula* and *Nerita*. The following cleavages are rapid, perhaps only ten minutes intervening between the 4 and 8 cell stages. The cleavage is undoubtedly of a spiral type, but this characteristic is more difficult to detect than in *Crepidula* because of the size differences of the blastomeres.

D. Time Table of Development: There is much variation in the developmental rate depending on temperature and other environmental conditions, but the following table will give some idea of the chronology at 25°C. (Schechter, 1941).
Times are recorded from insemination:

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 min.</td>
<td>Germinal vesicle reaction</td>
</tr>
<tr>
<td>30 "</td>
<td>Polar bodies formed</td>
</tr>
<tr>
<td>50 "</td>
<td>Promerei visible</td>
</tr>
<tr>
<td>1 Hr 5 min.</td>
<td>First cleavage</td>
</tr>
<tr>
<td>1 Hr 35 min.</td>
<td>Second cleavage</td>
</tr>
<tr>
<td>5 hrs.</td>
<td>Swimming forms</td>
</tr>
</tbody>
</table>

E. Later Development: The figures of the development of Dreissenia (Leisenhofer, 1900) will prove very helpful, for the embryology of the two forms is very similar.

1. Gastrulation and early Trochophore stages: Remove samples 4-9 hours after insemination. If forms are moving too rapidly, add a drop of Janus green to mounts. In the younger stages, note that the smaller, more rapidly dividing ectodermal cells are spreading over the larger, yolk-filled endodermal cells. This type of gastrulation is known as epiboly. The uncovered region is the blastopore. When the larva starts to swim (5-6 hours after insemination) a plate of large cells which will form the shell gland is visible on the future dorsal surface. Internally, two large, dark cells, the mesodermal teloblasts are often visible. By 9 hours the embryos have lost their somewhat barrel-shaped appearance and are pyramidal, the expanded base of the pyramid being the region in which the velum will form. The cilia are not marked at this time. The blastopore is visible on the ventral side as a conspicuous concavity on the dorsal surface. By 14 hours the shell gland will have evaginated and this concavity will no longer be visible. The cilia of the velum and the apical flagellum will be visible at this stage.

2. Young Veligers: Obtain samples of cultures about 18-19 hours after insemination. Note:
 a. General shape.
 b. The two-valved shell with its straight hinge line. How much of the body is enclosed by the shell?
 c. The apical flagellum, telotroch, and the long cilia of the developing velum.
 d. The stomodeal invagination on the ventral side, just below the velum. The protododeal invagination appears later (about 23 hours).
 e. The internal structures are difficult to recognize at this time, for a large, dark mass of undifferentiated endodermal and mesodermal cells fills most of the post-velar area.
PELECYPODA

BIBLIOGRAPHY

1941 Experimental studies upon the egg cells of the clam, Lactra solidissima, with special reference to longevity. J.E.Z., 86:461-477.
ALPHIEURA

Chaetopleura spiculate (the Chiton)

The species is dioecious, but there is no way of distinguishing the sexes externally.

Suggestions for Observation: Because of the large size and opacity of the egg, the early development is best studied by mounting egg samples in depression slides. Larval larvae can be mounted in a dilute solution of Janus Green for observation.

Study of Normal Development:
1. The Unfertilized Ovum: The spherical egg measures from 180 to 190 micra in diameter and appears opaque due to the large amount of yolk. Although internal processes can not be seen in living eggs, sections show that the ovum is usually in the process of developing the first maturation spindle when it is shed. Surrounding the egg is a tough, bristly chorion. When the egg leaves the oviduct they are embedded in a viscid jelly-like secretion which spreads over the bottom of the dish in a thin film.

2. Fertilization and Cleavage: There are no visible changes at the time of fertilization; a fertilization membrane is not raised and the egg does not change shape. Two transparent polar bodies are given off but no polar lobes are formed. The first noticeable change occurs shortly before first cleavage when there is a slight flattening of the egg at the animal pole. The first cleavage furrow (1 hr. 40 mins. to 1 hr. 50 mins. after insemination) divides the egg, in most cases, into equal blastomeres. In a small percentage of cases, one blastomere is perceptibly larger. The second cleavage is at right angles to the first, and again in some cases the D cell is slightly larger. The cells of the first quartette of micromeres given off by the doesisotropic third cleavage are distinguishable from the larger micromeres. The further divisions follow the regular pattern of spiral cleavage. Four quartettes of micromeres are given off. The first three give rise to the ectoderm, nervous system, and stolothorax, while the fourth quartette (except for the 4d cell) becomes part of the endoderm along with the taeniother. The 4d cell gives rise to the mesoderm as well as endoderm.

3. Time Table of Development: The following record, procured from a batch of eggs developing at 23-24°C is offered as a rough outline of developmental rate. Metamorphosis seemed to occur early in this batch, the usual time being from 7-12 days. Time is recorded from the time of insemination:

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st polar body</td>
<td>30 min</td>
</tr>
<tr>
<td>2nd "</td>
<td>55 "</td>
</tr>
<tr>
<td>1st cleavage</td>
<td>1½ hours</td>
</tr>
<tr>
<td>2nd "</td>
<td>2 "</td>
</tr>
<tr>
<td>3rd "</td>
<td>2 hrs. 40 min</td>
</tr>
<tr>
<td>gastrulation</td>
<td>ca. 13 hrs.</td>
</tr>
<tr>
<td>beating cilia</td>
<td>14 hrs.</td>
</tr>
</tbody>
</table>
rotation in capsule
20 hrs.
hatching
36 "
free swimming trocho-

phores
2½-3 days
metamorphosis
4 days

4. Later Stages of Development and Metamorphosis:
A. Young Trochophores 40-60 hours old: Those larvae are pro-

pelled through the water by the beating of a band of power-

ful cilia (the prototroch). The body rotates on its longi-

dudinal axis and the course followed is a spiral. Crowning

the protrochal hemisphere (the head visiculo) is a clump of

very long cilia (the apical tuft) which is apparently sensory

in function. The two lateral, reddish-brown larval eyes give

a certain amount of bilaterality to the otherwise radial or-

ganism. Although the mouth may be visible just below the

prototroch, the other regions of the digestive tract are ob-

scured by the yolk mass.
B. Older Larvae (3-4 days): There is an elongation of the body,
especially of the post-trochal hemisphere. The mouth and

the archenteron are now visible due to the reduction in the

quantity of yolk. The anus plates are beginning to appear

on the dorsal surface. Note the contractile foot that de-

velopes on the ventral surface just posterior to the mouth.
Locomotion is still by way of the prototrochal cilia, al-

though older larvae may creep along by means of the foot.
C. Metamorphosing Larvae: Metamorphosing larvae may be pro-
cured from the bottom of a culture dish. Note that the pro-
trochal and apical cilia are lost during metamorphosis, and
that the larvae now creep about by means of a well-developed
foot. The shell plates have increased in number, though the
full set of the adult is not yet complete. The mantle (a
fold of the body wall) develops just dorsal and lateral to
the foot.

REFERENCES

Grave, B. H. 1932 Embryology and life history of Chaetopleura

apiculata. J. korph., 54:153-160

Jahrb., 12

Nat. Marseille., Tome 1, Lenoir 5.
The Opening of Capsules: (The stage of development of the
be determined before removal from the capsule, with the uni-
binocular microscope). When the proper stage is found, on
the side of the capsule furthest from the eggs with a large
needle. With another needle, tear off the shell from the
side of the dish, making sure that a very large amount of
the pressure is not applied to the capsule. The eggs will
in a mass of jelly, take care that all of the eggs are
of the capsule and that the capsule is rather well torn
before releasing the pressure, or else the thick jelly will
back into the capsule, carrying the eggs with it. All of
the operations must be carried out under water, for the eggs
in contact with air. The jelly dissolves in the water, and
a few seconds, the eggs will settle down to the bottom of

Cleavages: Approximate Time Table:

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st lobe</td>
<td>50 min</td>
<td>1st polar body beginning</td>
</tr>
<tr>
<td>Disappe. of lobe</td>
<td>59</td>
<td>1st polar body off</td>
</tr>
<tr>
<td>2nd lobe appears</td>
<td>1 hr 12 min</td>
<td></td>
</tr>
<tr>
<td>2nd lobe gone</td>
<td>2 hrs 45 min</td>
<td></td>
</tr>
<tr>
<td>3rd lobe</td>
<td>2 hrs 42 min</td>
<td></td>
</tr>
<tr>
<td>1st cleavage</td>
<td>5 hrs 42 min</td>
<td></td>
</tr>
<tr>
<td>4 cells</td>
<td>4 hrs 52 min</td>
<td></td>
</tr>
</tbody>
</table>

Later Stages: Observe later stages of development through
skeleton larva (there is no trochophore larva).

REFERENCES

Clement, Anthony C. 1935 The formation of giant polar bodies

Crampton, R. E. 1936 Experimental studies on larval

Jorgensen, T. H. 1935 The fixation of the annelid
CELL LINEAGE

Maturation, Fertilization, and Cleavage through the 25-cell Stage in Crepidula.

Due to the opacity of the living eggs, the details of maturation, association of the sperm nuclei, and cleavage can best be studied from prepared slides. The eggs are not sectioned, but are whole mounts. Number one or zero cover glasses have been used, making it possible to examine the material under high power. Do not, under any circumstances, use oil immersion objectives on these slides. Conklin's two monographs (1897 and 1902) may be used for reference, or the photo copies of the plates from these papers.

Crepidula is a dioecious genus with the males fewer in number and smaller than the adult females. The spermatozoa mingle with ova before the egg capsules are formed around groups of eggs in the oviduct of the female. The nature females are sedentary, and the males locomotive, and at the breeding season, or perhaps once for all, the females are visited and inseminated by these motile males. All of the ova produced by a given individual during a season are laid within a short space of time.

1. On the prepared slides, make a careful study of various stages in the two maturation divisions. In the same eggs find the sperm nucleus and note its approach to the egg nucleus. Note also the small antipolar lobe. Make drawings.

2. Study the first and second cleavages, noting the direction of the axes of the mitotic figures in the latter. The small antipolar lobe may be visible near the vegetal region of the furrow at the 2-cell stage. Make drawings.

3. Study in detail the formation of the first three quartettes of microtubcules and the formation of the derivatives of the first and second quartettes. Indicate which divisions are dextrorotatory and which are levo-rotatory. Find and draw examples of the 8, 12, 16, 20, 24 and 25-cell stages. The last is difficult to find and it should be checked carefully. The nuclei may be identified by their size characteristics.

Some students, in their spare time, may wish to prepare their own slides of Crepidula maturation and cleavage stages. The following method is suggested:

A. Obtaining Eggs: With a heavy knife, loosen a Crepidula shell from its attachment. The egg capsules will either be attached to the substrate or to the foot of the female. Those that are small and light yellow contain eggs in the earlier stages of development; the larger, deep yellow or mud-colored capsules contain older embryos and larvae. Remove the capsules, by means of forceps, to a Syracuse watch-glass of sea water. Tear open the capsules with a pair of needles to release the eggs. Discard empty capsules. Examine the eggs under the microscope to ascertain the stage. Dark-field illumination may be helpful. It is best to mix several batches of young stages for slide-making.
B. Fixation: (Do not use fixatives or other reagents in any dishes which are used for living materials. Confine these reagents to vials). Having freed the eggs, wash them by gentle rotary rinsing with a pipette, and then concentrate them in the center of the dish. Change the sea water two or three times. Then take up the concentrated eggs with a pipette, and drop them, with a small amount of sea water, into a vial three-quarters full of Kloenberg's micro-sulphuric fixative. The eggs should be fixed at least 15 minutes.

Remove the fixative, using a pipette of small diameter equipped with a syringe bulb, and fill the vial with 70% alcohol. Wash in 70% until the eggs are white. It is advisable to avoid washing too long in 70%, since the stain employed is best when it does not penetrate the macromeres. These latter should, therefore, be left slightly acid. Thus the eggs are removed from 70% immediately after the last wash which removes no picric acid from them, hydrated in 50%, 35% and washed thoroughly in 2-3 changes of water.

C. Staining: After washing with water, fill the vial with undiluted Mason's haem-alum, and stain for 5-10 minutes. For the polar stages, 5-7 minutes is usually sufficient. After staining, wash thoroughly in water, dehydrate, and clear in xylol. Remove the xylol used in clearing and replace it with a small amount of thin damar.

D. Mounting: Cover glasses must be supported. For this purpose it has been convenient to use paper squares the size of 7/8" cover glasses. A hole is punched in the center of each square with a paper punch. In mounting, the squares are cleared in xylol, and fixed to the centers of the slides by adding three or four drops of thin damar before the evaporation of the xylol. When the paper mounts have dried, the eggs are removed from the vials in which they have been stored by the use of a pipette drawn out to a long taper and having a small diameter at its tip. The eggs are allowed to settle toward the tip of the pipette, and one drop of the egg-damar suspension is placed in the center depression of each paper mount. The damar is allowed to dry to the point of formation of a thin film in order that the eggs may remain dispersed and with the macromere quartette adjacent to the slide when mounted. Apply thick damar to the edge of the paper mount, immerse a #0 cover glass in xylol and apply it to the slide over the paper mount.

References Specifically for Crepidula:

General References on Cell-Lineage:

Fuxley and DeBeer 1934 Elements of Experimental Embryology. Cambridge Univ. Press.

Special References on Cell-Lineage:

References to Ilyanassa (cont'd from p. 9 of this section):

1. 2 and 3 are required, #4 should be done if time permits.

The three forms to be studied are Hydroides (Eupomatus) hexagonus; Parice and Sabellaria.

Cultures of advanced stages will be prepared. If you wish to prepare your own cultures proceed as follows: Hydroides both male and females will spawn immediately after being removed from their calcareous tubes. Remove several and place them in finger bowls (one worm per dish to keep the sexes separate). Remove the animals after they have spawned. Let sperm stand for about ½ hour. Add a few drops of sperm suspension to a dish of eggs. (Extraction of polar bodies and cleavage may be easily studied). The blastula stage is reached after 5-6 hours, gastrulation after 8-12 hours; the trochophore stage lasts from 20 hours to two weeks. The trochophores are best for study when 2-5 days old. Sabellaria may be treated in the same way. Fertilization of Nereis has been studied in a previous lab period.

1. The Trochophore of Hydroides.

The Trochophore is a typical Annelid trochophore. Consult the excellent figs. in Katschek ('86) and Shearer ('11). The larvae show positive phototaxis and gather at the window side of the dish. Mount trochophores, 3-5 days old, on a slide on which a few shreds of lens paper have been placed to entangle them and hold them quiet. Narcotics, e.g., a few drops of chloroform or of MgSO$_4$, are not very effective but may be tried. Vital staining obscures rather than clarifies the structures. The larvae are transparent, and proper adjustment of the illumination by moving the mirror and the Abbe condenser will bring out all structures. Study animals in lateral and in polar views (both from animal and from vegetal pole). The apical tuft and the anal visible are landmarks for the poles, the mouth is on the ventral side; the eye is on the right side. Observe the locomotion first.

Observe:

1. Shape of the trochophore
2. Apical tuft (several long cilia, probably functioning as a sense organ).
3. Apical organ, a thickening of ectoderm at the animal pole; a nerve center and probably the primordium of the cerebral ganglia.
4. The Prototroch, an equatorial band of large cilia. In older trochophores, two rows of cilia will be found; a row of short cilia anterior to the large cilia. The prototroch is the most characteristic structure of the larva, and gave it its name. It is always anterior to the mouth (prooral). It consists of a few large prototroch cells which become pigmented in older stages.
5. The metatroch (paratroch), a circular band of cilia in the middle of the posttrochal hemisphere.
6. A ciliated groove on the midventral line connecting the mouth and anus. This groove is interesting in that it marks the line of closure of the blastopore. The mouth is the remnant of the blastopore; the anus is a secondary opening at the lower end of the original blastopore slit.
7. One eye on the right side of the prototrochal hemisphere. Note the red eye pigment.
8. No statocysts on the ventral side.
9. The digestive tract. Consisting of: mouth opening, stomadoeum (cesophagus; ectodermal), enlarged stomach (entodermal), narrow intestines (entodermal except for the end portion which is invaginated ectoderm x proctodeum), and the anus, an opening behind the vegetal pole. All parts are beset with cilia. Feed India ink and study the mechanism of food intake.
10. The anal vesicles, a large mucocated cell at the posterior end, are not found in other trochophores.

11. The cavity between intestine and outer body wall is not a true coelom but a primary body cavity, the persisting blastocoel.

12. The larval kidney (paired) are typical protonephridia with flame cells; they open near the anus. They appear as slender rods near the statocyst, extending between esophagus and anus. They are best identified in animals with a testa pole up (consult figs. in Batschek and Scheer).

13. Muscles. Two fine strands will be seen bifurcating at the upper end of the larval kidney. One of them can be traced to its insertion at the apical plate, the other inserts at the esophagus. These are longitudinal muscles. Other longitudinal muscles extend from the esophagus to points of the upper hemispheres. A strong circular muscle is near the metatroch; the constriction of the larva caused by its contraction will be frequently observed. Note also circular (sphincter) muscles in the digestive tract.

14. Undifferentiated entomesoderm cells, single or in small groups, will be seen attached to the stomach, to the inner body wall, near the apical organ, etc.

15. The important entomesodermal cells (derivatives of 4d-Taloblasts) which will give rise to the mesodermal structures of the worm body are difficult to distinguish. They are small groups of cells near the lower end of the head kidney.

Draw lateral and polar views.

Metamorphosis of the Nereis Larva

The metamorphosis of an annelid larva into a segmented worm can be studied best in Nereis, 1 to 7 days old. Nereis has no typical trochophore but an abbreviated, undescribed larval development. The first signs of the adult, segmental organization appear very early. Prepare slides as under 1. Study larvae from all sides. Consult the figs. in B. E. Wilson (1922).

a. Trochophore-like stage 24 hrs. (Wilson, fig. 84)

Observe:

1. The prototroch, composed of 12 very large ciliated cells.
2. The paratroch, near the vegetal pole.
3. A pigmented area at the anal pole; the anal pigmented.
4. The mouth and stomodeum; the latter is a short ectodermal invagination.
5. The large macromeres have not yet differentiated into the entodermal parts of the intestine; their cell boundaries may be seen. No anus is formed as yet.
6. Several "frontal bodies" near the upper end. Circular disc-like structures of unknown function.
7. Two pairs of seta sacs, spherical structures in the poststomal hemisphere. The setae (2 chaetæ) will be differentiated inside of them. These sacs are the first indication of the first two segments of the worm.
8. Observe the trochothorax in locomotion.

B. Advanced trochophore, 2 days old (Wilson, figs. 85-89)

Identify all structures found in A. In addition observe:

1. Eye spots
2. A third pair of seta sacs has appeared behind the first two. All three are lined up in a row indicating the first 3 segments. Setae can be seen in
the process of formation, inside of these sacs; in slightly older stages, they will be seen projecting from the sacs.

3. **Pigment appears in the prototroch cleft.**

C. **Metamorphosis. 2½-3 days (Wilson, figs. 90-91)**

Notice the change of shape and the gradual demarcation of the first three segments.

5. The **heart**, a fold overhanging the mouth

6. Very long **bristles** develop in seta sacs. Study their fine structure. They appear one pair after another, eventually 10 pairs. They will be replaced at metamorphosis by ordinary setae.

IV. **Gastrulation and formation of the Trochophore in Hydras**

Prepare your own cultures (see p. 1). Gastrulation by invagination occurs approximately 7-10 hours after fertilization. Consult the figs. in Scharzer ('11) and Hutschek ('86).
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child, C. M.</td>
<td>1900</td>
<td>Early development of arenicola. Roux' Archiv. Bd. 9</td>
</tr>
<tr>
<td>Freipont, J.</td>
<td>1887</td>
<td>Le Genre Polygordius. Fauna u. Flora des Golfes von Neapel, V. 1 XIV.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zool. Inst. Wien, VI. (Hydroides)</td>
</tr>
<tr>
<td>Iwanoff, C. P.</td>
<td>1928</td>
<td>Entwicklung der Larvalsegmente bei den Annaliden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeitschr. Morph. Oak. Bd. 10</td>
</tr>
<tr>
<td>Just, E. E.</td>
<td>1922</td>
<td>On the rearing of sexually mature Nereis from eggs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Am. Nat. vol. 56</td>
</tr>
<tr>
<td>Killie, P. R.</td>
<td>1902</td>
<td>Differentiation without cleavage in the egg of the annelid</td>
</tr>
<tr>
<td></td>
<td>1906</td>
<td>Observations and experiments concerning the elementary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>phenomena of embryonic development in Chaetopterus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Formative stuff) Jour. Exp. Zool. Ill.</td>
</tr>
<tr>
<td></td>
<td>1909</td>
<td>Polarity and bilaterality of the Annelid egg. Biol Bull. XVI.</td>
</tr>
<tr>
<td>Novikoff, A. B.</td>
<td>1938</td>
<td>Embryonic determination in the Annelid, Sabellaria vulgaris,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biol. Bull. vol. 74</td>
</tr>
<tr>
<td>Shearer, C.</td>
<td>1911</td>
<td>Development and structure of the trochophere of Hydroids,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quart. J. Micro. Sci. vol. 56.</td>
</tr>
<tr>
<td>Wilson, E. B.</td>
<td>1892</td>
<td>Cell lineage of Nereis, Journ. of Morph. v. 6.</td>
</tr>
<tr>
<td>Wilson, E. B.</td>
<td>1898</td>
<td>Considerations of cell lineage and ancestral reminiscences.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ann N. Y. Acad. Sci. vol. 11.</td>
</tr>
<tr>
<td>Wistinghausen, C. a. von</td>
<td>1891</td>
<td>Untersuchungen Uber die Entwicklung von Nereis dumerillii.</td>
</tr>
<tr>
<td></td>
<td>1904</td>
<td>Beiträge zur praktischen Analyse der Polygordius-Entwicklung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>etc. Roux Archiv. Bd. 18.</td>
</tr>
<tr>
<td></td>
<td>1905</td>
<td>Zur Kopffrage der Annaliden. Verh. d. Deutschen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zool. Ges. (His figs. are reproduced in McBride)</td>
</tr>
</tbody>
</table>
A comprehensive survey of developmental processes in the tunicates would include examination not only of eggs and embryos but also of metamorphosis, various types of asexual reproduction, and regenerating forms. Because these developmental forms must be consistently related to the structure of the organism, it is necessary that the students should first of all review in standard texts the cnidocyte and life history of two common types of tunicates.

A. SIMPLE ASCIDIANS
DEVELOPMENT OF STYELA
Styela (Old name Cynthiella)
Conklin's classic description of the development of Styela (Cynthiella) provides a morphological background for the experimental work of the organism.

Fertile Eggs
Conklin's figures should certainly be referred to in following studies.

Methods
Though truly hermaphroditic, Styela is ordinarily self-sterile like several other classes (Virginia, 1940). It sheds the eggs and sperm between March and November, where fertilization takes place when ripe gametes from two different individuals meet. It is easy to have eggs shed and fertilized on normal schedule in the laboratory, but this entails the disadvantage of having to study the migrations of yellow pigment within them by artificial light.

The classic method of obtaining eggs and embryos from Styela has been to remove the gonads from a number of large individuals to a dish of seawater. This liberates all stages in the maturation of eggs and sperm, and usually half of them will be fertilized, whenever the time of day or night, and will commence development.

Lloyd (1939) has developed a method of controlling the natural synchronizing in the laboratory by illumination, and this is the best way to get fertilization for experimental material. It works well except for certain weeks in mid-summer, when the organisms are scarce. By such control, the stock batch of tunicates can be induced to shed numerously on successive days. They are kept darkened in running seawater until eleven or twelve hours before fertilization is desired, and then an artificial light is started by turning on the electric light. A 40-volt bulb 18" from the organisms is sufficient. Eggs and sperm are discharged in clouds at the necessary time.

b. Nature
Unfertilized Eggs
Sketch the mature, unfertilized eggs (diameter, 0.15 mm.) which should show the following:

1) Chorion, a tough membrane adhering to the outer surface.
2) Spherical inner follicle cells ("nurse cells") between chorion and egg itself. They contain yellow yolk.
3) Peripheral layer of egg, a clear layer containing minute yellow granules.
4) Central portion, consisting of large yolk granules.
5) Germinal vesicle, a very large eccentrically placed.
watch will emerge within 15 minutes of more.
This document appears to be a scientific or technical text, discussing biological processes or experimental observations. Due to the nature of the text and the absence of visual aids, it's not possible to accurately transcribe or summarize the content without additional context or assistance.
7 -- Tunicata

C. ch bud consists first of a tissue, then of cells. Here the extruders extract cells at one or both sides and becomes partitioned into three vesicles, the latter ones forming the terminal vessels of theophryngeal (intermediate) stage (Berrill, 1935).

3. P. n.;

APOP-T.;J; ~

B. SFTL.

BUDDING

or sketches sc'o Berrill, 1935)

Porophyra, is a little soft...colored medication, which consists of some forms colored colonies, etc. Pieces of the colony, both optionally stored in...tail and stored after a day or 30, ...oloids well out of the...tion of the structure. This method of budding is not found like pumpkins on vi'ie, with the youngest not at the...d. The young buds consist of an outer...cl do derived from the pseudopodous stolons. The tip...like S. salt pseudopodia. The...and the constricting.....blood streams in the stolons are...ted by mesenchyme spots. All stolons in the...nt of the...n. The method of budding is...
Cerebral vesicle = a7.13, a7.9, a7.4

Ectoderm = the area.

Neural plate = A7.4, A7.8

Endoderm = B7.1, B7.2, B7.7.1, A7.2, B7.5

Anterior cells = A7.6

Posterior cells = B7.1, B7.6, B7.8

Animal horn cells = D7.0

Vegetable horn cells = B7.7

Left = B7.6, B7.8, B7.7.1, A7.2

Right = B7.1, B7.5, A7.2

Horns = B7.7, A7.7

Overview = B7.13, a7.9, a7.4

The first numbers represent the time of cell, counting from the first gonad.
BIBLIOGRAPHY

GENERAL WORKS AND COMPARATIVE URODONYLOGY OF PROTOCHORDATS

Berrill, N.J.
Coddin, E.G.
Dalcq, A.
Dawydoff, C.
Herdman, E.C.
Herdman, W.A.
Korschelt, E.
Seeliger, O.
Willey, J..

Be:rrill, No
Castle, Vi.
E.
Cohen, J., and Berrill, N. J.
Conklin, E.G.

1936
1932
1936
1933
1935
1938
1928
1924
1936
1929
1931
1935
1896
1905
1937

Development of isolated partially separated blastomeres of Amphioerus. Ibid., 214:37-78.

Form and Causality in Early Development. Oxford.

II. Abbreviation of Development in the Vulpulidae. Ibid., 214:281-346.

The histology of the gonads and development of the egg envelopes of an ascidian (Styela plicata Lesueur). Jour. Morph. 70:181-108.

EXPERIMENTAL ANALYSIS OF DEVELOPMENT

Does half of an ascidian egg give rise to a whole egg? Arch. Entw. Mech. 31:327.

Conklin, E. G.

Eaton, H.

Driesch, H.

F. H. Morgan, T.

Reverberi, G.

Ries, E.

Rose, S. M.

Vahmit, C.

1897

1932

1938

Form and causality in early development. Cambridge University Press.

1938

1939

1895

1938

1942

1945

1945

1931

1933

1937

1839

1839

1931

1936 The developmental alteration of the rate of metamorphosis in the tunicate, Clavelina lentum (Van Neme). J. Exp. Zool., 78:215-.

1939 Studies of larval life and metamorphosis in Ascidia nigra and species of Polyandrocarpa. Papers from the Tortugas Laboratory, 38:1-45.

Holtgen, E.

Kotlyovsky, A.

Brion, P.

1935 TUNICATE ASEXUAL REPRODUCTION

Berrill, N. J.

1940 The development of the colonial organism Symplagna vivida. Ibid., 79: 272-281.

1941b Size and morphogenesis in the bud of Botryllus. Ibid., 80: 185-193.

Gaudry, P.

Gautrier, H.

Gaviney, E. H.

1934 The behavior of isolated pieces of ascidian (Perothuria) vivida) stolen as compared with ordinary budding J. Elisha Mitchell Sci. Soc., 49.

Nowalewsy, A.

Pocht, A.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Title</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drosch, H.</td>
<td>1902</td>
<td>Die Restitutionen der Clavelina lepadiformis.</td>
<td>Arch. Entwicklungsmekhanik, 14:247-287.</td>
</tr>
</tbody>
</table>

